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a b s t r a c t

This paper describes an efficient finite element method of analysing the elastic in-plane bending and out-
of-plane buckling of indeterminate beam structures whose members may be tapered and of mono-sym-
metric I cross-section. The structure’s loading includes concentrated moments and concentrated or uni-
formly distributed off-axis transverse and longitudinal forces, and its deformations may be prevented or
resisted by concentrated or continuous rigid or elastic off-axis restraints.

Tapered finite element formulations are developed by numerical integration instead of the closed
forms often used for uniform elements. Difficulties in specifying the load positions for tapered mono-
symmetric members caused by the variations of the centroidal and shear centre axes are avoided by using
an arbitrary axis system based on the web mid-line. Account is taken of additional Wagner torque terms
arising from the inclination of the shear centre axis.

A computer program based on this method is used to analyse a number of examples of the elastic in-
plane bending of tapered cantilevers and built-in beams, and very close agreement is found between its
predictions and closed form solutions.

The program’s predictions of the elastic out-of-plane flexural–torsional buckling of a large number of
uniform and tapered doubly and mono-symmetric beams and cantilevers under various loading and
restraint conditions are generally in close agreement with existing predictions and test results. The com-
mon approximation in which tapered elements are replaced by uniform elements is shown to converge
slowly, and to lead to incorrect predictions for tapered mono-symmetric beams.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The distributions of axial forces and bending moments in steel
beam structures caused by the applied loads need to be deter-
mined before their elastic flexural–torsional buckling resistances
can be analysed [1]. While these may be easily found for indeter-
minate structures with uniform members and for determinate
structures with tapered members, they are less easily found for
indeterminate tapered structures. It is noteworthy that most if
not all of the early and later studies of the elastic buckling of ta-
pered structures cited in [2,3] and more recently in [4,5] are for
statically determinate beams or cantilevers.

The finite element stiffness matrices used to analyse the elastic
in-plane bending and out-of-plane buckling of a tapered beam
structure depend on the variations of the section properties along
each element of which a structure is composed, and in general re-
quire numerical integrations to be made, in place of the use of the
common closed form solutions for uniform elements.

When the tapered elements are of mono-symmetric cross-sec-
tion (Fig. 1a), the centroidal and shear centre axes wander [6] along

the element length (Fig. 1b). If the problem is simplified by using
an arbitrary axis system [7], then modifications need to be made
for the eccentricity of the centroid from the chosen axis to allow
for the moments induced by eccentric longitudinal loads or
restraints.

This paper describes a finite element method of analysing the
elastic in-plane bending and out-of-plane buckling of indetermi-
nate beam structures whose members may be tapered and of
mono-symmetric I-section. The structure’s loading includes con-
centrated moments and concentrated or uniformly distributed
off-axis transverse and longitudinal forces, and its deformations
may be prevented or resisted by concentrated or continuous rigid
or elastic off-axis restraints. The method is superior to the com-
monly used approximate method of replacing a tapered element
by a large number of uniform elements, with a significant reduc-
tion in the number of elements required to obtain an accurate
solution.

While this method gives solutions for bending and out-of-plane
buckling, it also allows the analysis of the inelastic buckling of uni-
form steel beams for which non-uniform yielding along the beam
causes both the in-plane and out-of-plane properties to vary, so
that the member is effectively tapered [8]. It may be noted that
the combination of the anti-symmetrical stresses due to the
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applied loading with the symmetrical residual stresses in a doubly
symmetric I-section beam causes the effective section to become
mono-symmetric [9].

A computer program FTBTM based on the method described in
this paper is used to analyse a number of examples of the bending
and out-of-plane buckling of tapered beam structures, and its pre-
dictions are compared with previous theoretical and experimental
values.

2. Tapered monosymmetric members

The member cross-section shown in Fig. 1a has top and bottom
flange and web widths bt, bb, and bw and thicknesses tt, tb, and tw,
respectively. The element shown in Fig. 1b may be linearly tapered
in all cross-section dimensions, and while thickness tapering is
very rare in practice, depth tapering is comparatively common.
The member has an arbitrary but convenient [7] longitudinal axis
Oz which is the locus of the web mid-heights, and an Oy axis which
coincides with the web centreline. The section properties required
for an in-plane analysis are

I0 ¼ A ¼
Z

A
dA ¼ bttt þ bbtb þ bwtw ð1Þ

I1 ¼ ycA ¼
Z

A
ydA ¼ �btttbw=2þ bbtbbw=2 ð2Þ

I2 ¼ Ix � y2
c A ¼

Z
A

y2dA

¼ btttb
2
w=4þ bbtbb2

w=4þ b3
wtw=12þ bwtwy2

c ð3Þ

in the coordinate yc of the centroid is given by

yc ¼
bw

2
bbtb � bttt

A
ð4Þ

The coordinate of the shear centre S (Fig. 1a) is defined by

ys ¼ yc þ y0 ¼
bw

2
b3

btb � b3
t tt

b3
btb þ b3

t tt

ð5Þ

Concentrated transverse and longitudinal loads Q (at yQ), N (at
yN), and moments M may act at a point z along the axis Oz as
shown in Fig. 2a, as well as rigid or elastic restraints (at yR). Distrib-
uted transverse and longitudinal loads q (at yq) and n (at yn) may
act along a length L of the element as shown in Fig. 2b, as well
as elastic restraints (at yr).

3. In-plane analysis and behaviour

3.1. Finite element formulation

A finite element method of carrying out the in-plane (pre-flex-
ural–torsional buckling) linear elastic analysis of uniform beam-
columns is detailed in [1]. In this, the equilibrium equations are
represented by

KiDi ¼ Q in þ Qie ð6Þ

in which Ki is the in-plane global stiffness matrix, Di are the in-
plane global nodal deflections and rotations, Qin are the nodal loads,
and Qie are the nodal loads equivalent to the loads distributed along
the elements. The global stiffness matrix is given by

Ki ¼
X

e

TT
iekieTie ð7Þ

in which kie is an element stiffness matrix and Tie is a matrix which
transforms the element in-plane end deflections and rotations die

into the corresponding global deflections and rotations Di according
to

die ¼ TieDi ð8Þ

Nomenclature

A area of cross-section
bb,t,w bottom and top flange widths and web depth
Di,u,v,ut generalised elasticity matrices
E Young’s modulus of elasticity
f stress
G shear modulus of elasticity
Go global stability matrix
goe element stability matrix
Ix,y second moments of area about x, y axes
Ib,t second moments of area of bottom and top flanges
I0 value of Ix at z = 0
Ip Ix þ Iy

Iw warping section constant
J uniform torsion constant
Ki,o global in-plane and out-of-plane stiffness matrices
kie,oe element in-plane and out-of-plane stiffness matrices
L length
M external moment
Mx internal bending moment
N, n concentrated and distributed longitudinal loads
Nz internal compression force
Q, q concentrated and distributed transverse loads
Qie,in generalised equivalent distributed and concentrated

nodal loads
Qu value of Q for a uniform member
rs distance of point (x, y) from shear centre (0, ys)

Tie,oe in-plane and out-of-plane element to global transforma-
tion matrices

Tw Wagner torque
tb,t,w Bottom and top flange and web thicknesses
Ue Element strain energy increase
u, v, w Displacements in x, y, z directions
us Shear centre displacement parallel to x axis
Ve potential energy increase
x, y cross-section coordinates of arbitrary axis system
yc,s centroid and shear centre coordinates
yo distance of shear centre from centroid
yN,n positions of N, n loads
yQ,q positions of Q, q loads
yR,r positions of concentrated and distributed restraints
z distance along member
ad,t,w taper constants
b =(1 + az/L)
bx Mono-symmetry section constant
Di,o global in-plane and out-of-plane nodal deflections and

rotations
die,oe element in-plane and out-of-plane nodal deflections

and rotations
eu,v generalised strain vectors
k buckling load factor
/ twist rotation
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