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a b s t r a c t

Because fixed arches have much higher flexural–torsional buckling resistance than pinended arches, they
are used for engineering structures in many cases. However, studies on their flexural–torsional buckling
behaviour have rarely been reported in the open literature hitherto. This paper investigates the elastic
flexural–torsional buckling of fixed circular arches subjected to uniform compression and uniform bend-
ing because they play important roles in the design of steel arches against their flexural–torsional failure.
One of the major difficulties in solving the flexural–torsional buckling problem of a fixed arch is to deter-
mine its accurate buckling shapes. The flexural–torsional buckling shapes are studied using a finite ele-
ment (FE) method in association with eigenvalue analyses. It is found that the flexural–torsional buckling
shape of a fixed arch becomes more complicated than the case of a straight beam-column or a shallow
arch when the rise-to-span ratio increases, and so the theoretical analysis requires more terms of Fourier
trigonometric series to describe the buckling shapes. Based on this, analytical solutions for flexural–tor-
sional buckling loads of fixed arches are derived both by the Rayleigh–Ritz method and by solving differ-
ential equations for buckling deformations. Comparisons with the FE results show that the analytical
solutions by the Rayleigh–Ritz method are reasonably accurate and that the analytical solutions by solv-
ing the equations for buckling deformations are exactly the same as the FE results. Simple approximate
formulas for buckling loads of fixed arches with box-sections are proposed based on the extensive FE
results for structural designers to use. The validity of the effective length method for the fixed arches
is also discussed. It is found that in the case of circular arches the effective length method should not
be used because the rise-to-span ratios and boundary conditions have complicated and significant influ-
ence on the buckling load.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

An arch under in-plane loading may suddenly displace laterally
and twist out of its plane of loading and fail in a flexural–torsional
buckling mode, before it buckles in the plane of loading in a bifur-
cation mode or in a limit point instability mode [1–8], when it does
not have adequate lateral-bracings. Extensive studies on elastic
flexural–torsional buckling of circular arches have been carried
out by a number of researchers analytically (either by static equi-
librium approaches or by energy approaches) [7–33], numerically
[34–38], and experimentally [39,40]. In particular, investigations
of the elastic flexural–torsional buckling load of arches in uniform
compression or in uniform bending are most extensive [7–28].
Although arches may have different boundary conditions, most
studies have been focused on pin-ended circular arches [7–24]. It
was concluded [12–14,18,19] that it is important to use the correct

strain expressions in deriving solutions for the flexural–torsional
buckling load of circular arches, and that the solutions of Vlasov
[8] and Yoo [10] for circular arches under uniform compression
are not reliable because incorrect strains were used. Although
expressions of solutions for flexural–torsional buckling loads of
pin-ended arches in uniform compression or in uniform bending
obtained by researchers are slightly different from each other, their
numerical results are close to each other [7–24]. It has been shown
[7–24,31–33] that as the included angle of a pin-ended circular
arch increases, its elastic flexural–torsional buckling resistance to
uniform compression and to uniform bending decreases rapidly
and becomes very small for a deep arch. Therefore, the pinned-sup-
ports are undesirable for the flexural–torsional buckling resistance
of deep arches. It is known that the elastic flexural–torsional buck-
ling resistance of a fixed arch is much higher than that of its
pin-ended counterpart [25–28,45] thus the arches with fixed
supports are used in many cases, particularly for deep arches.
Hence, investigations of elastic flexural–torsional buckling of fixed
arches in uniform compression and in uniform bending are much
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needed because they provide the essential parameters in the
design of fixed arches against their flexural–torsional failure
[41–46]. However, studies on the elastic flexural–torsional buck-
ling of fixed arches in uniform compression and in uniform bend-
ing are not adequate although Timoshenko and Gere [7] had a brief
discussion about their flexural–torsional buckling loads and Pi and
Bradford [25,26] derived the finite strains and energy equations,
and derived the buckling loads using the Rayleigh–Ritz method.
Exact analytical solutions for flexural–torsional buckling loads of
fixed arches in uniform compression or in uniform bending do
not appear to be reported in the open literature hitherto. In addi-
tion, because exact solutions are usually complicated, approximate
analytical solutions are very much desired, which are often derived
by the Rayleigh–Ritz method. When the Rayleigh–Ritz method is
used in association with the total potential energy of the arch
and load system to derive the approximate solutions, the lateral
displacement u(u) and twist angle h(u) during flexural–torsional
buckling are usually expressed as Fourier trigonometric series
[19,21,23]. And numerical methods often need to be used because
they are coupled with each other in the potential energy expres-
sion. In many cases, however, when proper and adequate terms
of Fourier trigonometric series for u(u) and h(u), which satisfy
the boundary conditions, are chosen, accurate approximate
analytical solutions can be derived [19,21,23]. It has been
shown [12,13,19,22,23] that the single term of the trigonometric
series given by
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can accurately describe the first mode flexural–torsional buckling
shape of pin-ended circular arches in uniform compression and in
uniform bending and lead to sufficiently accurate solutions for their
lowest lateral–torsional buckling loads, where u0 and h0 denote the
maximum lateral displacement and twist angle at the arch crown,
respectively, while u is the coordinate of central angle and H is
the subtended angle of the arch. It has also been shown in

[14,19,21,31] that the single term of the trigonometric series given
by
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can describe the first mode flexural–torsional buckling shape of
fixed beams in uniform bending or the first mode flexural buckling
shape of fixed columns in uniform compression, where S is the
length of the beam or column. Because of these, it may be thought
that the single term similar to Eq. (2) can be used to derive the
flexural–torsional buckling loads of fixed arches in uniform
compression or in uniform bending. However, test results for flex-
ural–torsional buckling of fixed arches reported in [40] have shown
that the buckling shapes of the lateral displacements and twist
angle during buckling are not a single sine or cosine wave because
the lateral displacements u(u) and twist angle h(u) near the arch
ends are in the opposite direction to those near the arch crown.
Because the single term approximation similar to Eq. (2) cannot
describe buckling shapes of u(u) and h(u) in the opposite direc-
tions, it may lead to incorrect prediction for the flexural–torsional
loads of fixed circular arches. Therefore, to derive accurate approx-
imate analytical solutions for the elastic flexural–torsional buckling
load of fixed circular arches in uniform compression or in uniform

Nomenclature

A cross-sectional area of sections
b flange width of cross-section
E modulus of elasticity
EIw warping rigidity of cross-section
EIy flexural rigidity of cross-section with respect to out-of-

plane bending
f rise of an arch
G shear modulus of elasticity
GJ torsional rigidity of cross-section
h overall height of cross-section
Iy out-of-plane second moment of area of the cross-sec-

tion
iy ¼

ffiffiffiffiffiffiffiffiffi
Iy=A

p
, gyration radius of the cross-section with re-

spect to out-of-plane bending
K sectional warping parameter
k sectional torsional parameter
L span of an arch
M bending moment of cross-section
Mcr buckling moment of a pin-ended arch
Mcrf flexural–torsional buckling moment of a fixed arch in

uniform bending
Mþcrf flexural–torsional buckling moment of a fixed arch in

uniform positive bending
Myzf the first mode flexural–torsional buckling moment of a

uniformly bending fixed beam

ma buckling coefficient corresponding to the buckling load
N axial compressive force of cross-section
Ncrf flexural–torsional buckling axial force of an fixed arch in

uniform compression
Pyf the first mode flexural buckling load of an axially-

loaded fixed column
q conservative radial distributed load
qcrf radial distributed load corresponding to flexural–tor-

sional buckling of an arch
R radius of an arch
r0 polar gyration radius of cross-section
S, Sf developed length of cross-sectional centroid axis of an

arch
tf flange thickness of cross-section
tw web thickness of cross-section
u out-of-plane translational displacement of cross-sec-

tional centroid of an arch
yq loading position of external force over cross-section

along the y axis
H subtended angle of an arch
h twist rotation of cross-section of an arch
ky = S/iy, out-of-plane slenderness of an arch
u coordinate of central angle of an arch

Fig. 1. Dimensions of circular arches.
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