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a b s t r a c t

Vehicle loads play an important role in fatigue deterioration and overload collapses of bridges. In this
paper, a novel de-correlated tail-based extreme value (EV) distribution model of vehicle load is proposed.
The monitored data show that occurrences of vehicle loads are correlated. Additionally, it is more reason-
able to employ the tail region of a distribution when estimating extreme loads. Moreover, a Bayesian
form of this new model is constructed, and an extension of this model, the Confidence Index (CI), is
defined and may be promising for applications. The monitored vehicle weight on the Nanjing 3rd Yangtze
River Bridge is used to demonstrate that the proposed tail-based de-correlated EV model predicts the
extreme load more accurately than traditional methods and that the Bayesian approach can further
increase the precision of this estimate. Finally, the calculated CI of the complete prediction process offers
a comprehensive guideline for the estimate precision.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Being an essential component of a transportation system, long-
span bridges have a significant impact on the national economy
and on social stability. Authorities worldwide have recognized
the importance of structural health monitoring (SHM) for bridge
safety to ensure ordinary operation during the structure’s service
lifetime. SHM systems, in conjunction with proper software, can
identity possible defects in the bridge structure, forecast the poten-
tial risk of collapse, and predict the remaining service time of the
bridge [5,9].

Monitored traffic action, especially the extreme values (EVs) of
vehicle loads, is one of the most important measures for determin-
ing fatigue deterioration [21,15,17,14] and predicting the remain-
ing service time [27,7,8] of long-span bridges. The demand for
the transportation of goods that is associated with a prosperous
economy has led to increasingly serious bridge overload. In fact, re-
cent collapses of transportation bridges as a result of overloading
from trucks have attracted much attention. Load restrictions and
fines for overloading might help to control the traffic loads on
bridges. However, current bridge design codes consider neither
the phenomenon of increasingly serious overload nor the actual ef-

fect of load-controlling methods on the EV distribution of traffic
loads.

Over the past decades, a considerable amount of research has
been conducted related to vehicle loads modeling on bridge
[18,20,28]. With the help of structural health monitoring tech-
niques, the EV distribution can be estimated based on the moni-
tored traffic load data [10,13], which provide the potential to
insight the inherent characteristics of vehicle loads. The traffic flow
was modeled as a Poisson process by Lan et al. [9], and the extreme
value distribution function of vehicle load during the service peri-
od was extrapolated. Tong et al. [24] developed a multi-peak prob-
ability model to estimate the extreme value distribution of vehicle
loads. OBrien et al. [19] proposed a semi-parametric distribution
model based on in-field data from two sites. However, in compar-
ison with the monitored data, the predictions generated by these
traditional methods are far from satisfactory because the tradi-
tional methods involve several flawed assumptions, such as the
following: (1) vehicle loads are independent of one another; and
(2) the fitting of the entire distribution range is precise. A study
of monitored traffic loads shows that the extreme values of the
traffic loads are actually correlated and that the tail region of the
distribution range, which is much more important for the EV esti-
mate, is far from accurate.

In Sections 2 and 3, a general method for solving the above
problems is presented. Specifically, in Section 2, the distribution
of the tail, rather than the distribution of the entire range, is
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employed during the process of estimating the EV. Additionally,
the correlation of vehicle loads is excluded using a Peak Over
Threshold (POT) method. In Section 3, a novel Bayesian approach
to this de-correlated tail-based model is presented, and two possi-
ble applications, Bayesian updating (BU) and a Probabilistic
Stochastic Model (PSM), are consecutively proposed. Section 4
illustrates a practical application of the methods proposed in
Sections 2 and 3 for the Nanjing 3rd Yangtze River Bridge. An anal-
ysis of the collected data shows that excluding the correlations,
employing a tail distribution model and incorporating the Bayesian
model can lead to a more satisfactory estimate of EV distributions.

2. EV distribution estimation based on de-correlated tail

As recommended in the Unified Standard for Reliability Design
of Highway Engineering Structures (GB/T 50283-1999), the sto-
chastic process of traffic loading conforms to a Filtered Poisson
Process (FPP). The cumulative density function (CDF) of the EV dis-
tribution for a FPP is:

FeV ðxÞ ¼ expf�kTð1� FðxÞÞg; ð1Þ

where F(x) is the section distribution of the traffic loads, k is the
intensity parameter of the stochastic process, and T is the return
period required for estimating EVs.

To estimate the EV distribution of the traffic loads, the section
distribution of the traffic loads should first be obtained. Many pre-
vious studies have noted that the section distribution of the entire
range does not reflect the tail region, which is mainly responsible
for precise EV estimation. Thus, the tail distribution is incorporated
into the EV distribution estimate in this study.

2.1. GPD fit of tail distribution

The Generalized Pareto Distribution (GPD), which was proven
(see [1] to be the limit distribution of scaled excess over high
threshold values under certain conditions, is often used to fit tail
datasets. The cumulative density function of the GPD is given as
follows:

Fc;rðxÞ ¼ 1� 1þ cðx� uÞ
r

� ��1
c

; ð2Þ

where r and c represent the scale and shape parameters, respec-
tively, and u is the chosen threshold. Substituting Eq. (2) into Eq.
(1), the cumulative density function of the EV distribution can be
obtained as follows:

Fc;r;kðxÞ ¼ exp �kT 1þ cðx� uÞ
r

� ��1=c
( )

: ð3Þ

2.2. Select threshold

A proper threshold is critical for estimating the EV distribution.
To choose a proper threshold, the Mean Excess Function (MEF) of
the GPD [22] is employed and is defined as:

eðuÞ ¼ Eðx� ujx > uÞ ¼ rþ cu
1� c

: ð4Þ

Eq. (4) shows that eðuÞ is a linear function of the threshold, u.
From the definition of the MEF, it’s sample estimator is:

enðuÞ ¼
1

Nu

X
i

ðxi � uÞ; ð5Þ

where Nu is the number of the samples excess threshold u, and xi is
the sample values that excess threshold u. If the excess above a

threshold, u0, conforms to the GPD, the MEF of the samples over
the threshold, u0, will fluctuate around a straight line. The point
set {u, en(u)} is considered to be the mean residual life plot (MSLP)
[4]. Therefore, the appropriate choice of the threshold, u0, should
satisfy the condition that the u > u0 region of the MSLP approaches
a straight line.

However, with increasing threshold, the Standard Deviation
(STD) of sample estimator of MEF is en(u) is also increasing:

STD½enðuÞ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2

Nuð1� rÞ2ð1� 2rÞ

s
:

In order to capture the increase of linearity as well as the loss of
credibility (increasing variance), Standardized Residual (SR) is de-
fined as:

SRðuÞ ¼ enðuÞ � efitðuÞ þ STD½enðuÞ�; ð6Þ

where efit(u) is the linear fit of the MRL above u and evaluated at u.

2.3. Exclude data correlation

Generally, the basic assumption that the loads are independent
of one another is used for the EV estimate. However, based on an
analysis of a large amount of monitored data, it is found that this
assumption is not correct in some cases. For example, the same
heavy truck may pass over a bridge and then return on that same
bridge. Heavy vehicles may pass simultaneously as a motorcade,
and motorcades of heavy trucks have been frequently monitored
by the SHM system. Therefore, it becomes necessary to exclude
the correlation of vehicles.

In this study, only the consecutive time correlation of vehicles,
such as a motorcade, is considered. The Peak Over Threshold (POT)
method [16] is well developed and widely employed in extreme
value statistics. The algorithm of the POT method is:

(1) select clusters of exceedance over the threshold according to
a certain criterion;

(2) select the maximum of each cluster, assuming that the max-
imum values of each cluster are independent;

(3) fit these maximum values to GPD.

The clustering method in POT determines the de-correlation
functionality of that POT algorithm. For example, if the data are
clustered in 1 min of time, the temporal correlation within 1 min
is mostly eliminated [11], and these 1 min cluster maximums can
be treated as independently and identically distributed if the data
has an auto-correlation with a lag less than 1 min.

Other methods that account for data correlation in the EV esti-
mate, including longer-span temporal and spacial correlations, will
be studied in the future.

3. Estimate Bayesian EV

The occurrence of traffic loads may change during the operation
of a bridge. Therefore, the traffic load model should be updated
accordingly to reflect the real status of traffic loads based on the
monitored data. In this study, a Bayesian analysis [3,23,25,26] is
employed to update the traffic load model using the monitored
data. The Bayesian analysis is performed by combining the prior
information, p(h), and the sample information, x, into the posterior
distribution of h given the sample observation, x. Noting that h and
x have joint density:

hðx; hÞ ¼ LðxjhÞpðhÞ; ð7Þ

where p(h) is the prior distribution of the model parameters, h, and
L(�) is the likelihood function, and thus, L(x|h) is the conditional
likelihood of sample x given the parameter h.
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