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a b s t r a c t

Making either mass or stiffness eccentric mitigates the translational vibration of systems subjected to
base excitation. The level of mitigation depends not only on the amount of eccentricity but also on the
frequency ratio (the ration of translational frequency to rotational frequency). This paper proposes a
systematic approach for finding the values of eccentricity and frequency ratio that lead to the maximum
reduction in translational vibrations. First an optimization problem in frequency domain is formulated.
The mean square value of response is selected as the performance index. Two types of constraints includ-
ing limitations on rotations and eccentricity are imposed. Kanai–Tajimi power spectral density function is
used to model the ground motion. After formulating the optimization problem two structural models are
studied numerically: a single story building model and a multistory building model. It is observed that
using the proposed approach the performance index can be reduced by up to 50%. The time history anal-
yses also indicate significant reductions in displacements. Finally a case study is conducted to compare
the performance of the proposed strategy with that of other established passive control methods. The
results of the case study show that the proposed method can be as effective as other strategies, as far
as displacement control is concerned.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Engaging more modes in the response of structures can be used
to reduce its translational dynamic response. One such an
approach is to engage torsional modes through engineered mass/
stiffness eccentricity. In other words three dimensional effects
caused by eccentricity, can be used to reduce translational
response by engaging new modes of vibration [11]. The level of
reduction depends on the relationship between dominant transla-
tional and torsional frequencies of the structure [4]. This relation-
ship is expressed as the ratio of dominant translational frequency
to the dominant torsional frequency and it is called frequency ratio
Cx ¼ x2

x=x2
h

� �
[4].

Furthermore statistical analysis shows that by introducing
eccentricity to systems subjected to earthquake records, the
average transitional vibration can be reduced by up to 30%. The
eccentric structures, in which the first mode of vibration is tor-
sional (Cx P 1), have shown to have higher level of mitigation in
translational response [4].

The main objective of this paper is to develop a systematic
approach to maximize reductions in translational vibration
through introducing mass/stiffness eccentricity to the system. In

other words the problem that is going to be solved herein can be
defined as follows: A structure with a specific translational fre-
quency is given. If the structure is subjected to base excitation,
what is the eccentricity and frequency ratio for which the maxi-
mum reduction in translational displacements can be achieved?
This eccentricity or distribution of eccentricity is called optimal
eccentricity. For the sake of simplicity, throughout this paper, trans-
lational displacement is called displacement.

2. Formulation of the optimization problem

2.1. Governing equations of motion

In the time domain, the equations of motion of a system with 3n
degrees of freedom subjected to base excitation can be described
as:

M€uðtÞ þ C _uðtÞ þ KuðtÞ ¼ f gðtÞ ð1Þ

where u(t) is the 3n � 1 displacement vector at the center of the
mass, and M, C and K are mass, damping and stiffness matrixes
respectively. fg(t) is the ground motion function and is described as:

f gðtÞ ¼ �Mr€ugðtÞ ð2Þ

In which €ugðtÞ is the ground acceleration and r is a 3n � 1
location vector. It is assumed that earthquake is applied in x-direc-
tion only, therefore r is expressed as:
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r ¼ 100100100 . . . 100½ �T ð3Þ

Taking the Fourier Transform of both sides of Eq. (1) the analy-
sis could be transformed into frequency domain. The governing
equations in frequency domain are:

ð�x2M þ ixC þ KÞUðxÞ ¼ FgðxÞ ð4Þ

where i ¼
ffiffiffiffiffiffiffi
�1
p

and U(x) is the Fourier transforms of u(t). Fg(x) is the
Fourier transform of ground motion function and is expressed as:

FgðxÞ ¼ �MrUgðxÞ ð5Þ

in which Ug(x) is the Fourier transform of ground acceleration
function.

Assuming:

ZðxÞ ¼ �x2M þ ixC þ K ð6Þ

then U(x) can be readily found from Eq. (4):

UðxÞ ¼ Z�1ðxÞFgðxÞ ð7Þ

Usually Z�1(x) is shown as H(x) and is called frequency response
matrix or transfer function. Therefore, in its simplest form, the
equation of motion in the frequency domain can be expressed as:

UðxÞ ¼ HðxÞFgðxÞ ð8Þ

If ground motion function fg(t) is stochastic then the response u(t)
would be stochastic as well. In this case the relationship between
the Power Spectral Density Function (PSDF) of response and excita-
tion is described as follows:

Su ¼ HðxÞSf HTðxÞ ð9Þ

in which:

Sf ¼ ð�MrÞSgð�MrÞT ð10Þ

Su and Sf are respectively the PSDF matrixes of response and ground
motion. Superscript T denotes the transpose or complex conjugate
gradient of a matrix or a vector. Sg is the PSDF of the earthquake
excitation.

Finally by substituting Eq. (10) in (9) the PSDF of response can
be re-written as:

Su ¼ HðxÞðMrÞSgðMrÞT HTðxÞ ð11Þ

If one is interested in an r-component response vector, it can be
found in time and frequency domains respectively by:

vðtÞ ¼ B � uðtÞ ð12Þ

VðxÞ ¼ B � UðxÞ ð13Þ

where B is a r � 3n coefficient matrix, the r � r spectral density ma-
trix for vector u(t) is then given by:

Sv ¼ BSuBT ð14Þ

Eqs. (12)–(14) are particularly useful when only the displacements
and/or rotation of top floor are selected for study.

2.2. Power spectral density of ground motion

A major challenge in optimal design for seismic applications is
the uncertainties of ground motion. There are different ways to
tackle this challenge. A popular method is to use the power spec-
tral density function proposed by Kanai [7], and Tajimi [13] to
model the ground motion as a stationary stochastic process. This
PSDF is expressed as:

SgðxÞ ¼
x4

g þ 4n2
gx2

gx2

ðx2
g �x2Þ2 þ 4n2

gx2
gx2

ð15Þ

where xg and ng are characteristics ground frequency and
damping ratio, respectively. By proper selection of these two
parameters the above equation can be used to generate different
spectral density shapes. It is shown in Fig. 1 that Eq. (15) cap-
tures the frequency content of historical seismic events such
as El Centro (xg = 12 and ng = 0.6) and Kobe (xg = 12 and
ng = 0.3) very well [5]. El Centro is the N–S component recorded
at the Imperial Valley in El Centro during the Imperial Valley,
California earthquake of May 18, 1940 and Kobe is the N–S com-
ponent recorded at the Kobe Japanese Meteorological Agency
(JMA) station during the Hyogo-ken Nabu earthquake of January
17, 1995.

This approach of modeling the ground motion has been widely
used in the literature and it has proven to be successful in optimal
design of other passive control systems such as tuned mass damp-
ers (TMD) [5,2,9,10].

2.3. Performance index

Since the analyses are performed in the frequency domain and
the ground motion is modeled as a stochastic process, a convenient
performance index (i.e. objective function) to use is the integral of
the PSDF of the structural response with respect to frequency
[5,9,6,2]. This integral is basically the mean square value of the
structural response. In this research the goal is to minimize the
translational vibration of the top floor, therefore the performance
function is defined as:

Jtop ¼ E u2
xtop

� �
¼ lT

Z þ1

�1
Sudw

� �
l ð16Þ

in which E(�) represents the expected value or mean and l is a 3n � 1
vector and is defined as:

l ¼ ½000 . . . . . . 100�T ð17Þ

2.4. Constraints

Two types of constraints are considered in the problem of find-
ing the optimal eccentricity. One type represents the limitations on
the rotation and the other type restrains the maximum value that
eccentricity can have.

Fig. 1. Comparison of Kanai–Tajimi PSDF with the actual ones for El Centro and
Kobe records (Hoang, 2008).
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