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a b s t r a c t

The effect of parameter variations in railway bridges subjected to train loads has been evaluated within
the framework of a two-level factorial experiment. Especially, the influence of train–bridge interaction in
comparison to other parameter variations is highlighted. Variations in the system parameters were intro-
duced, corresponding to modelling alternatives considering reasonable uncertainties in a bridge design
model. The dynamic effect from a passenger train set has been evaluated at, and away from, resonance
in beam bridges of span lengths 6, 12, 24 and 36 m. By means of the two-level factorial design, effects
from changes in a single parameter, as well as joint effects from simultaneous changes in several param-
eters, may be evaluated. The effect of including train–bridge interaction through a simple vehicle model
as opposed to moving forces was found most distinct at resonance. The effect of the choice of load model
was furthermore shown largest for the bridges of span length 24 and 36 m, where it was found more
influential or comparable to the effect of other system parameter uncertainties. The high influence of
the load model may well be attributed to the fact that the natural frequencies of the 24 and 36 m bridges
are close to the vertical frequency of the primary suspension system of the train. The reduction of
response obtained with the train–bridge interaction model are discussed in relation to bridge frequency
rather than span length, and compared to the Additional Damping Method given in the European design
code.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Following the increased demand on existing railway networks,
as well as the vision of a well-developed network of high-speed
railway lines, increased knowledge in the field of train, track and
bridge engineering is needed. Especially the demand for higher
speeds and longer train sets requires knowledge in the best prac-
tices of modelling the dynamics of the railway bridge-vehicle sys-
tem. Dynamic train loads on bridges are usually simulated with a
moving force (MF) model [1–6]. During the last few decades much
attention has been focused on the issue of train–bridge interaction.
In this context the dynamics of the train system is included in the
model as a moving system (MS) composed of masses connected by
springs and dampers [1,7–10]. To consider train–bridge interaction
may in certain cases reduce the bridge response; furthermore, it
enables the study of effects from track irregularities and the
evaluation of passenger comfort criteria. Comparisons between
the MF model and the MS model have been performed in for exam-
ple [11–19]. More specifically, it has been confirmed [20–25] that
several system parameters govern whether a MS model gives

notably different results compared to the MF model. In [17] it is
concluded that the reduction of bridge response from train–bridge
interaction depends mainly on the primary suspension to bridge
frequency ratio, the bogie to bridge mass ratio and the carriage
length to bridge length ratio.

According to the European design code, Eurocode [26], a dy-
namic analysis is generally required in the design of railway
bridges for speeds higher than 200 km/h. A limit is set for the
bridge deck acceleration to avoid ballast destabilisation. The accel-
eration limit is an interesting subject of study as it is typically deci-
sive in dynamic analyses [27]. It is furthermore sensitive to
uncertainties in the system parameters. Thus, in this study, a
two-level factorial experiment [28] was performed in order to
evaluate the influence of variations in the system parameters in
dynamic analyses of beam bridges. Especially, the influence of
train–bridge interaction in comparison to uncertainties in other
system parameters was highlighted. The results are compared to
the Additional Damping Method (ADM) provided in the Eurocode
[26]. The two-level factorial experiment is an efficient tool for
the statistical screening of the effect of several factors on a process,
or in this case, a model. Using factorial experimentation we are also
able to detect whether any strong joint effects are present. These
kinds of results are not available from screening procedures for
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one variable at a time; see for example [18]. Not many authors
have used the two-level experiment concept in the context of
bridge dynamics; available examples include [29,30]. Wiberg [29]
implemented a factorial design studying individual and joint ef-
fects of several modelling factors in a detailed model of a pre-
stressed concrete bridge, with the purpose of choosing the most
influential parameters for model updating. In both [29,30] the train
speed is included as one of the parameters in the experimental de-
sign. As the response does not vary linearly with speed, the speed
was in the present study instead considered by performing analy-
ses in a speed interval for each parameter combination. The effect
of the studied parameters may thus be evaluated both at and away
from resonance.

2. Experimental design

The flow chart in Fig. 1 depicts the methodology used in the sta-
tistical screening of modelling alternatives used in this study. It in-
cludes finite element (FE-) modelling with analyses according to a
two-level (2n) factorial design, in which 2 levels of n = 6 factors are
evaluated, followed by a statistical evaluation of the results.

2.1. Two-level factorial experimentation

From the effect on a measurable response from variations (level
0 and level 1) in a chosen number of factors it is with the use of a
factorial design possible to detect the most influential factors. It is
also possible to detect joint effects, or parameter interactions, i.e.
differences in the effect of one factor when another factor is varied
from its high to its low level. If l replications of an experiment is
performed and yijkl is the observation with factor A at level i, factor
B at level j and factor C at level k, then the model equation for a 23

factorial design is given by [31]

Yijkl ¼ lþ ai þ bj þ ck þ ðabÞij þ ðacÞik þ ðbcÞjk þ ðabcÞijk þ ql

þ eijkl; ð1Þ

where Yijkl is the estimated response, l is the grand mean, ai, bj, ck

are the effect of factor A, B and C, respectively, at level i, j and k. The

estimated parameter interaction effect of the ith level of factor A
and the jth level of factor B is given by (ab)ij, and so forth. The effect
of the replicate l is given by q, and eijkl are the error terms which are
assumed to be random variables having a normal distribution with
zero mean and variance r2. Furthermore, the effects are restricted
to the conditions a1 = �a0, b1 = �b0, c1 = �c0. Equally, the sums of
the two- and three-way interaction term effects are assumed zero,
as well as the sums of the replication effects. As can be realised from
Eq. (1), the change in the mean response l from a change from
level 0 to level 1 in one term corresponds to two times its effect
ai, bj, ck,(ab)ij, . . ., which is what will be referred to as the estimated
effect, or simply the effect, of that term. Terms from main effects
and parameter interactions are included in the model based on an
F-test, testing mean squares (estimates of the variance r2) for a
higher estimate of the variance from a between-treatment mean
square, compared to the estimate of the variance from the error
term. As an FE-model was used in this study, producing identical re-
sults for each run with unchanged input data, the experiment was
performed without replication. With this in mind, the error in the
statistical model may be estimated by pooling insignificant factors
into the error term. Thereafter, the significance of each term may
be evaluated using an ANOVA table, cf. [29,31]. Alternatively, a nor-
mal scores plot can be used to visualise the estimated effects and
thereby distinguish the most important terms in the factorial model
[28].

The choice of the low and the high level for each factor is critical
and must be relevant for the problem at hand [32]. The factors may
be quantitative or qualitative (on-off factors). As the two-level fac-
torial model equation is linear, non-linear variations between the
low and the high level of quantitative factors will not be detected.
For a correct interpretation of the results, the chosen response var-
iable should therefore be reasonably linear for changes in the
quantitative factors within the range of the experiment.

2.2. Procedure of analysis

In the present study, 26 factorial experiments were performed
on four different bridges. The six studied parameters are given in
Table 1, with level 0 and level 1 values of which one is an on-off
factor (the choice of load model type) and five are quantitative
(axle load, beam stiffness, beam mass, beam damping ratio and
rotational support stiffness). The variations from level 0 to level
1 were chosen to represent reasonable variations due to uncertain-
ties in a bridge design model. The level 1 rotational stiffness of
0.8 GNm/rad represents a semi-encastré boundary condition, esti-
mated using a procedure equivalent to the one used in [5]. The
resulting ratio between the fundamental bridge frequency for the
case of the constraint support condition and the hinged support
condition is 1.03–1.23 for the herein studied bridges, which is
comparable to findings in reference [33]. The response variables
were chosen as maximum bridge deck acceleration and maximum
bridge deck displacement, computed at 30 equally spaced sections
along the beam. The FE-analyses were performed according to the
26 factorial design, and in the evaluation of the results the follow-
ing procedures were used:

1. Inspection of response time histories and response versus speed
plots to verify the results from the FE-models.

2. Normal probability plots and scatter plots of residuals to vali-
date the factorial model.

3. Finally, normal scores plots of estimated effects for the evalua-
tion of the most important terms.

Three out of the six factors in the factorial design (beam stiff-
ness, beam mass and rotational support stiffness) affect the natural
frequencies of the beam. Additionally, the simplified interactionFig. 1. The methodology used in the statistical screening of modelling alternatives.
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