Engineering Structures 57 (2013) 339-355

Contents lists available at ScienceDirect

Engineering Structures

journal homepage: www.elsevier.com/locate/engstruct

Evaluation of the ultimate strength of R.C. rectangular columns subjected to axial force, bending moment and shear force

P.P. Rossi*

Dept. of Civil and Environmental Engineering, University of Catania, Italy

ARTICLE INFO

Article history: Received 26 March 2013 Revised 27 July 2013 Accepted 2 September 2013 Available online 26 October 2013

Keywords: Rectangular cross-section Shear force Axial force Bending moment Reinforced concrete

ABSTRACT

This paper describes a mathematical tool for the calculation of the ultimate strength of reinforced concrete rectangular columns subjected to combined internal forces including shear. The proposed method is based on the application of the static theorem of limit analysis and considers simplified stress fields to simulate stresses in steel bars and (unconfined and confined) concrete. Both truss and arch effects are taken into account. To assess the effectiveness of the method, the relations developed are applied with reference to a large number of columns tested in the past by many researchers and a comparison between the theoretical and experimental results is drawn. Finally, the results of the proposed method are compared to others deriving from the application of more simplified methods present in the literature.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Over the last century, a significant effort has been made to achieve an accurate evaluation of the response of reinforced concrete columns subjected to combined internal forces including shear. Owing to the different background of researchers, numerous approaches, theories and models have been developed to simulate the most significant aspects of the response of such structural members. The pioneering studies carried out by Ritter and Morsch [1,2] have provided fundamental tools and are still at the basis of some proposals for refined truss models [3–5]. Some new theories have been formulated in the second half of the last century (e.g. equilibrium plasticity truss model, modified compression field theory and softened truss model theory) and have been gradually refined to evaluate the structural response by means of continuum models [6–9]. However, as reported by other researchers [10–12], these theories have not been developed to predict accurately the degradation of the shear strength. Further, some of these advanced theories (e.g. the modified compression field model and softened truss model theory) do not constitute a simple tool for practising engineers. To relieve the computational burden required by continuum models, many researchers have proposed macromodels (e.g. [10-22]) and fibre beam-column elements (e.g. [23-28]). The accuracy and the range of application of these models have been gradually extended to comprise the interaction between axial, flexural and shear deformations and the dynamic response of structures up to their collapse (e.g. [5,10-21]). While some of these models have been developed on the basis of the results of the abovementioned refined theories (particularly the modified compression field theory), some others have been formulated using semi-empirical relations of the force and displacement response parameters which mostly characterise the cyclic behaviour of columns (e.g. maximum shear resisting force and degradation of the shear strength with the flexural ductility demand). The simplified shear strength capacity models adopted in the latter cases (e.g. [29-31]) or reported in codes (e.g. [32-36]) traditionally consider the shear strength as the sum of three resisting contributions: concrete and transverse reinforcement contributions of the truss mechanism and contribution of the arch mechanism. All these shear strength models introduce simplifications of the structural behaviour (e.g. an assigned value for the slope of the normal stresses in the web and simplified relations for the depth of the compression zone of the cross-section) and are adjusted on the basis of results of laboratory tests. Some of these models also consider the degradation of the shear strength because of the inelastic flexural deformation; a detailed discussion regarding the different strategies adopted to reduce the shear strength as a function of the displacement ductility demand is reported in reference [37].

In the last decades, as an alternative to the abovementioned formulations, the shear strength of reinforced concrete members subjected to combined internal forces including shear has also been evaluated by means of simplified continuum models. In these models, stress fields are considered instead of resultants of stresses to simulate the response of steel and concrete [9,38] and the basic

CrossMark

^{*} Address: Dipartimento di Ingegneria Civile e Ambientale, Facoltà di Ingegneria, Viale A. Doria, 6, 95125 Catania, Italy. Tel.: +39 095 7382279; fax: +39 095 7382249. *E-mail address*: prossi@dica.unict.it

^{0141-0296/\$ -} see front matter @ 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.engstruct.2013.09.006

 $b_{\rm o}$

width of the confined core

Nomencalture

Greek letters

α	confinement effectiveness factor	С	mechanical cover of the longitudinal reinforcement
α_n	confinement effectiveness factor (longitudinal plane)	Cs	mechanical cover of the hoops
αs	confinement effectiveness factor (transverse plane)	$d_{s'}, d_{s''},$	$d_{s'''}$ depth of cross-sections S', S'' and S'''
$\Delta \theta$	maximum excursion of θ with respect to the angle θ_1	fc	compressive strength of concrete
n	fcc/fc	fc2	reduced compressive strength of concrete under biaxial
θ	angle of inclination of the diagonal stress of the concrete	502	state of stress
Ũ	in the web	fcc	compressive strength of confined concrete
θı	angle of inclination of the first crack	fct	tensile strength of concrete
$\phi' \phi''$	ϕ''' angle of inclination of the strut (arch effect type 1.2a)	ful	vield strength of the longitudinal reinforcement
φ,φ	and 2h)	funa	vield strength of the hoops
01.000	reinforcement ratio of the longitudinal bars	h	depth of the member cross-section
P 1,101	reinforcement ratio of the flange longitudinal bars	h ₁ , h ₂ , l	h_2 depth of the zones F_1 , F_2 , and F_2
P IW O	transverse reinforcement ratio	h.	depth of the confined core
σ_{1}	$\sigma_{\rm c}$ equivalent normal stress in $F_{\rm c}$ $F_{\rm c}$ and $F_{\rm c}$ (truss action)	I.v	shear span of the member
σ_1, σ_2	$_{-2}$ σ_{-2} normal stress of concrete in the zones F_1 F_2 and F_3	M	bending moment of the cross-section
061, 0	(truss action)	M' M''	<i>M</i> ^{<i>m</i>} bending moment (arch actions type 1–2a and 2b)
$\sigma' \sigma$	σ''' vertical compressive stress in the zone F_2 (arch ac-	M_1 , M_2	M_2 contributions of zones F_1 , F_2 , and F_2 to the bending
$0_{c2}, 0$	$_{c2}^{c2}$, σ_{c2}^{c2} vertical compressive stress in the zone r_2 (aren ac tions type 1 2a and 2h)		moment (truss action)
σσ	effective lateral compressive stress due to confinement	Maun	bending moment of the laboratory test
σen	effective lateral compressive stress due to commement	N	axial force of the cross-section
0 en,y	vielding of hoons	N' N'' I	$N^{\prime\prime\prime}$ axial force (arch actions type 1 2a and 2b)
σı	principal tensile stress developed at first crack on the	N ₁ . N ₂ .	N_2 contributions of zones F_1 , F_2 and F_3 to the axial force
01	chord narallel to the neutral axis and passing through	,	(truss action)
	the centroid of the uncracked homogeneous cross sec-	N". N"	contributions of zones E_1 and E_2 to the axial force cause
	tion		by the arch action type 2a
$\sigma_{\rm e}$, $\sigma_{\rm e}$, normal stress of the longitudinal reinforcement in the		N	axial force of the laboratory test
011, 01	$_{2,013}$ normal stress of the longitudinal removement in the zones F_1 , F_2 , and F_2 (truss action)	n_1	total number of longitudinal bars laterally engaged by
σ''	tensile stress in the longitudinal bars of the zone F_{4}		hoops or cross ties
011	(arch effect type 2a)	Rv	V _{aur} /V _{aur}
σ'''	tensile stress in the longitudinal bars of the zone F_2	s	spacing of the transverse reinforcement
013	(arch effect type 2h)	V	shear force of the cross-section
σ	mean compressive stress on the gross concrete cross-	V. V". V	" shear force (arch actions type 1, 2a and 2b)
σm	section	Varn	maximum shear force recorded during the laboratory
σ_{c}	normal stress of the transverse reinforcement caused by	·exp	test
05	transverse deformation of concrete	Vnum	ultimate shear force predicted by means of the pro-
σ_{a2}	normal stress of the transverse reinforcement in the	· num	posed method
0.33	zone F_2	V1. V2	v-coordinate of the separation lines of the central part
au	tangential stress in the zone F_2	511,52	F2
č	tungentiur stress in the zone 13	Velim	h/2
Roman letters		Vi lim	h/2 - c
Λ	cross soctional area of the column	Velim	$h/2 - c_c$
	A area of the zones E E and E	Vc	v-coordinate of the centroid of the area of concrete in
л ₁ , л ₂	, A_3 area of the longitudinal reinforcement of the flange	J Gc2	the zone F_2
Aslf	area of the longitudinal reinforcement of the web	Vc	v-coordinate of the centroid of the area of concrete in
Δ	area of the transverse reinforcement per layer	J G ² 3	the zone F_3
h h	aica of the member cross section	Vc	v-coordinate of the centroid of the area of the longitudi-
b	distance between consecutive engaged bars	J G ₁₁	nal reinforcement in the zone F_1
$\nu_{\rm i}$	distance between consecutive engaged bars		1
1			

theorems of limit analysis are applied to evaluate the shear capacity of the member. Early applications of this method for structural safety check date back to the late 1970s [39] and regard reinforced concrete beams. Since then, the method has been used by several researchers (e.g. see [40–42]) to obtain simple formulae for the shear strength of beams and to comprehend the role of the geometric and mechanical parameters in the resisting truss mechanism of members subjected to the combined action of forces including shear. In this very context, the aforementioned method has been adopted by Recupero et al. [43–45] to define the ultimate capacity interaction diagrams of reinforced and prestressed concrete beams characterised by rectangular, T or I shaped cross-section and subjected to axial force, shear force and bending moment. More recently, the arch action has also been considered within the same mathematical problem to achieve more accurate estimates of the shear strength of columns. The application of this refined model to circular columns has highlighted the accuracy of the results for members with low to high aspect ratios [46].

This paper extends the latter studies to reinforced concrete rectangular columns subjected to axial force, bending moment and shear force. Like the method proposed for circular columns, the one described here is intended to evaluate the maximum shear force resisted by columns and, therefore, does not consider the shear strength degradation due to the inelastic flexural Download English Version:

https://daneshyari.com/en/article/6741139

Download Persian Version:

https://daneshyari.com/article/6741139

Daneshyari.com