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a b s t r a c t

Important failure mode of such plated beams is the debonding of the FRP plates from the concrete due to
high level of stress concentration in the adhesive at the ends of the FRP plate. This paper presents a new
method for reducing interfacial stresses in a concrete beam bonded with the FRP plate by including the
effect of the fiber orientation in the FRP plate. This work is divided into two parts; the first one is based on
the laminates theory for the analytical solution where a minimization method is used to directly deter-
mine the fiber orientation reducing the interfacial stresses. The second part consists into a Finite Element
modeling where the analytical solution and different fibers orientation combinations are tested for
improving strengthening quality. Numerical results from the present analysis are presented in order to
show the advantages of the present solution over existing ones and to reconcile debonding stresses with
strengthening quality.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Strengthening reinforced concrete beams by plating FRP lami-
nates represents a new technology in the civil engineering field.
This technique has many advantages including ease of application
due to the high strength-to-weight ratio of FRP, conserving aes-
thetic aspect of the structure, and high corrosion resistance.

One of the main disadvantages of this technique is the debond-
ing of the FRP plates from the concrete, particularly at the ends of
the FRP plate. Consequently, many studies have been carried out in
order to understand the failure mechanism of plated or connected
beams [1–14] or laminated glass [15]. These studies converge to an
important aspect: the presence of shear and normal stresses at the
plate–core interface. In fact, these stresses can produce the brittle
fracture of the concrete layer, which supports the composite lam-
inate, followed by the premature failure of the strengthened beam.
Many closed-form solutions have been developed by researchers
for the interfacial stresses [16–35]. Smith and Teng’s solution
[21] gives an accurate estimation of interfacial stresses but does
not take into account the FRP plate fiber orientation. Other solu-
tions have been presented in order to improve the solution devel-
oped by Smith and Teng [21]. In fact Tounsi [22] have proposed a
new approach taking into account the adherends shear deforma-
tions and neglecting fibers orientation effect too. Lau et al. [9] have

presented a simple theoretical model to estimate the interfacial
stresses taking into account the FRP plate fibers orientation. How-
ever, this method ignores the plate bending deformations effects
and the flexural rigidity of the composite plate is not well esti-
mated to compute the interfacial normal stresses.

Tounsi and Benyoucef [23] have presented a new method in
which the FRP plate fiber orientation is considered and the flexural
rigidity of the composite plate is not neglected. A sensitivity anal-
ysis has been presented considering different fibers orientation
combinations.

In this paper, the same approach as Tounsi and Benyoucef [23]
for interfacial stresses expressions is considered. However a new
method enabling to obtain the minimum of interfacial stresses
by minimizing process is presented. This process gives directly
the fibers orientation combination presenting the minimum of
debonding risk conversely to Tounsi and Benyoucef [23] where a
parameter study varying fiber orientation combinations is used.
A Finite Element investigation is also presented in this paper to
verify the analytical method and to test the strengthening quality
of the optimum solution for debonding stresses.

2. System definition and assumptions

The derivation of the solution below is described in terms of
adherends 1 and 2 (Figs. 1 and 2), where adherend 1 is the concrete
beam and adherend 2 is the soffit plate. Adherend 2 can be either
steel or FRP but not limited to these ones.

The following assumptions are made:
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1. The concrete, adhesive, and FRP materials behave elastically
and linearly.

2. No slip is allowed at the interface of the bond (i.e. there is a per-
fect bond at the adhesive–concrete interface and at the adhe-
sive–plate interface).

3. Stresses in the adhesive layer do not change with the thickness.
4. Deformations of adherends 1 and 2 are due to bending

moments and axial forces.
5. The shear stress analysis assumes that the curvatures in the

beam and plate are equal (since this allows the shear stress
and peel stress equations to be uncoupled). However, this
assumption is not made in the peel stress solution. This
assumption is used in several works e.g. Smith and Teng [21]
and Tounsi [22].

3. Analytical equations

3.1. Adhesive shear stress: governing differential equation

In this part, q is assumed to be uniformly distributed load.
A differential segment, dx of the plated beam is shown in Fig. 2

where all the forces and stresses are represented with their signs.
We denote sðxÞ and r(x), respectively as the interfacial shear and
the normal stresses.

The shear strain in the adhesive layer is expressed as:

cxy ¼
@uðx; yÞ
@y

þ @wðx; yÞ
@x

� u2ðxÞ � u1ðxÞ
ta

ð1Þ

Consequently, the shear stress in the adhesive layer is given by:

sðxÞ ¼ Ga
u2ðxÞ � u1ðxÞ

ta

� �
ð2Þ

where Ga, ta, u1 and u2 denote respectively the shear modulus, the
thickness of the adhesive layer, the horizontal displacement at the
bottom of the concrete beam, and the horizontal displacement at
the top of the externally bonded FRP plate. Differentiating Eq. (2)
with respect to x gives the shear stress expression in terms of the
mechanical strain of the concrete e1ðxÞ and the FRP plate e2(x):

dsðxÞ
dx
¼ Ga

e2ðxÞ � e1ðxÞ
ta

� �
ð3Þ

The strain at the bottom of adherend 1 is given by:

e1ðxÞ ¼
du1ðxÞ

dx
¼ y1

E1I1
M1ðxÞ �

1
E1A1

N1ðxÞ ð4Þ

where E1 is the elastic modulus, A1 the cross-sectional area, M1 the
bending moment, N1 the axial force and y1 the distance from the
bottom of adherend 1 to its center.In this study, the laminate theory
[36] is used to highlight the fibers orientation effect on the behavior
of the externally bonded composite plate. Using this theory for a
symmetrical composite plate [36], the mid-plane strain e0

x and the
Curvature kx of the composite plate are given as:

e0
x ¼ A011Nx

1
b2

and kx ¼ D011Mx
1
b2

ð5Þ

where [A0] = [A]�1 is the inverse of the extensional matrix ½A�;
½D0� ¼ ½D��1 is the inverse of the flexural matrix ½D�; and b2 is the
width of FRP plate.

Explicitly, the terms of the matrices ½A� and ½D� are written as:

Amn ¼
XN

j¼1

Q mnðhj � hj�1Þ and Dmn ¼
XN

j¼1

Q mn h3
j � h3

j�1

� �
ð6Þ

where

Q11 ¼ E11
1�m12m21

h i
cos4ðhjÞ þ E22

1�m12m21

h i
sin4ðhjÞ þ 2 m12 E22

1�m12m21
þ 2G12

h i
cos2ðhjÞ sin2ðhjÞ

Q22 ¼ E11
1�m12m21

h i
sin4ðhjÞ þ E22

1�m12m21

h i
cos4ðhjÞ þ 2 m12 E22

1�m12m21
þ 2G12

h i
cos2ðhjÞ sin2ðhjÞ

Q12 ¼ m12 E22
1�m12m21

cos4ðhjÞ þ sin4ðhjÞ
h i

þ E11
1�m12m21

þ E22
1�m12m21

� 4G12

h i
cos2ðhjÞ sin2ðhjÞ

Q33 ¼ G12

8>>>>>>><
>>>>>>>:

ð7Þ

where j is number of the layer; h; ½Q � and hj are respectively the
thickness, the Hooke’s elastic tensor and the fibers orientation of
each layer.

Using classical laminate theory, the strain at the top of adher-
end 2 is given by:

e2ðxÞ ¼
du2ðxÞ

dx
¼ e0

x �
t2

2
� kx ð8Þ

Substituting Eq. (5) in (8) gives the following equation:

e2ðxÞ ¼ A011
N2ðxÞ

b2
� D011

t2

2b2
M2ðxÞ ð9Þ

where N2ðxÞ ¼ Nx and M2ðxÞ ¼ Mx.
The subscripts 1 and 2 denote respectively adherends 1 and 2.

M(x), N(x) are the bending and axial force in each adherend.
The horizontal forces equilibrium gives:

dN1ðxÞ
dx

¼ dN2ðxÞ
dx

¼ b2sðxÞ ð10Þ

And then:

N1ðxÞ ¼ N2ðxÞ ¼ b2

Z x

0
sðxÞdx ð11Þ

Assuming equal curvature in the beam and the FRP plate (per-
fect contact) it is obtained:

d2w2ðxÞ
dx2 ¼ d2w1ðxÞ

dx2 ð12Þ

x 

a aLp

L

q 

b2

b1

t1 ta

t2

Fig. 1. Simply supported beam strengthened with bonded FRP plate.
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Fig. 2. Forces in the infinitesimal element of a soffit-plated beam.
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