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a b s t r a c t

This paper studies the behaviors of large amplitude vibration, nonlinear bending and thermal postbuck-
ling of nanocomposite beams reinforced by single-walled carbon nanotubes (SWCNTs) resting on an elas-
tic foundation in thermal environments. Two types of carbon nanotube-reinforced composite (CNTRC)
beams, namely, uniformly distributed (UD) and functionally graded (FG) reinforcements, are considered.
The material properties of FG-CNTRCs are assumed to be graded in the beam thickness direction, and are
estimated through a micromechanical model. The motion equations of a CNTRC beam on an elastic foun-
dation are derived based on a higher order shear deformation beam theory. The thermal effects are also
included in the motion equations and the material properties of CNTRCs are assumed to be temperature-
dependent. Numerical studies are carried out for the nonlinear vibration, nonlinear bending and thermal
postbuckling of CNTRC beams resting on Pasternak elastic foundations under different thermal environ-
mental conditions. It is found that a CNTRC beam with intermediate CNT volume fraction does not nec-
essarily have intermediate nonlinear frequencies, buckling temperatures and thermal postbuckling
strengths. Thermal postbuckling path of unsymmetric FG-CNTRC beams is no longer the bifurcation type.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Carbon nanotubes (CNT) possess exceptional mechanical, ther-
mal and electrical properties and are used as significant reinforce-
ment materials for high performance structural composites with
substantial application potentials [1–3]. Carbon nanotube-rein-
forced composites (CNTRCs) have advanced mechanical properties
such as high strength, high stiffness and light weight which can be
applied as layers in advanced laminated structures. Recent re-
searches on CNTRCs [4–7] observed that only a low percentage of
CNTs (2–5% by weight) can be added to the composites as more
volume fraction in CNTRCs can actually cause the deterioration of
their mechanical properties [8]. Shen [9] proposed to apply the
functionally graded (FG) concept to CNTRCs in order to effectively
make use of the low percentage of CNTs in the composite. He stud-
ied the nonlinear bending behavior of CNTRC plates with a linear
distribution of CNTs along the thickness direction of the plates
and observed that the load-bending moment curves of the plates
can be considerably improved through the use of a functionally
graded distribution of aligned CNTs in the matrix. Shen and his
co-authors [10–14] further extended the study to the postbuckling

and nonlinear vibration of CNTRC plates and shells and highlighted
the influence of the FG-CNT distribution patterns on the mechani-
cal behaviors of the CNTRC structures. The concept of functionally
graded nanocomposites is strongly supported by a recent publica-
tion [15] in which a functionally graded CNT reinforced aluminum
matrix composite was fabricated by a powder metallurgy route.
Consequently, investigations on bending, buckling and vibration
of CNTRC structures are recently emerged as an interesting field
of study [16–20].

Several studies have been reported on the bending, buckling and
vibration of CNTRC beams based on Euler–Bernoulli beam theory,
Timoshenko beam theory and higher order shear deformation beam
theory [21–26]. Among those, Ke et al. [21] investigated the nonlin-
ear free vibration of functionally graded CNTRC Timoshenko beams.
They found that both linear and nonlinear frequencies of function-
ally graded CNTRC beams with symmetrical distribution of CNTs
are higher than those of beams with uniform or unsymmetrical
distribution of CNTs. This work was then extended to the cases of
functionally graded CNTRC Euler–Bernoulli beams with piezoelec-
tric layers by Rafiee et al. [22] and dynamic stability of functionally
graded CNTRC Timoshenko beams by Ke et al. [23]. Yas and Hesh-
mati [24] presented free vibration and linear buckling of function-
ally graded CNTRC Timoshenko beams on an elastic foundation by
using the differential quadrature method. They [25] also presented
a dynamic analysis of functionally graded CNTRC beams under the
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action of moving load by using the finite element method (FEM).
Recently, Wattanasakulpong and Ungbhakorn [26] presented linear
bending, buckling and vibration of CNTRC beams resting on an
elastic foundation based on a higher order shear deformation beam
theory. Like in the case of functionally graded ceramic–metal beams
with simply supported boundary conditions, the bifurcation buck-
ling of simply supported functionally graded CNTRC beams does
not exist due to the stretching–bending coupling effect. Therefore,
the bifurcation solutions for simply supported unsymmetric func-
tionally graded CNTRC beams subjected to in-plane compression
and temperature variation may be physically incorrect [24], unless
the compressive load or the stress resultant caused by temperature
rise is applied on the physical neutral surface of the CNTRC beam.

In the present work, we focus our attention on the nonlinear
free vibration, nonlinear bending and thermal postbuckling of
CNTRC beams resting on an elastic foundation in thermal environ-
mental conditions. Two types of CNTRC beams, namely, uniformly
distributed (UD) and functionally graded (FG) reinforcements, are
considered. The motion equations are based on a higher order
shear deformation beam theory and von Kármán-type nonlinear
strain–displacement relationships. The beam-foundation interac-
tion and thermal effects are also included. The material properties
of CNTRCs are assumed to be temperature-dependent. The mate-
rial properties of FG-CNTRCs are assumed to be graded in the thick-
ness direction, and are estimated through a micromechanical
model. Two ends of the beam are assumed to be simply supported
and in-plane boundary conditions are assumed to be immovable.
The nonlinear vibration characteristics, nonlinear bending and
thermal postbuckling behaviors of CNTRC beams resting on an
elastic foundation under different sets of thermal environmental
conditions are presented and discussed in details.

2. Effective material properties of functionally graded CNTRCs

We assume that the CNTRC layer is made from a mixture of
aligned single-walled carbon nanotubes (SWCNTs) and matrix
which is assumed to be isotropic. The SWCNT reinforcement is
either uniformly distributed or functionally graded along the thick-
ness direction of a CNTRC structure. At the nanoscale, the structure
of the carbon nanotube strongly influences the overall properties
of the composite. Several micromechanical models have been
developed to predict the effective material properties of CNTRCs,
for instance, the Mori–Tanaka model [27,28] and the Voigt model
as the rule of the mixture [29,30]. The Mori–Tanaka model is appli-
cable to micro-particles and the rule of mixture is simple and con-
venient to predict the global material properties and responses of
the CNTRC structures. At nanoscale both Mori–Tanaka and Voigt
models need to be extended in order to include the small scale ef-
fect. It has been shown that the Voigt and Mori–Tanaka models
have the same accuracy in predicting the buckling and vibration
characteristics of functionally graded ceramic–metal beams [31],
plates [32] and shells [33]. According to the extended rule of mix-
ture, the effective Young’s modulus and shear modulus of CNTRCs
can be expressed as [9]

E11 ¼ g1VCNECN
11 þ VmEm ð1aÞ

g2

E22
¼ VCN

ECN
22

þ Vm

Em ð1bÞ

g3

G12
¼ VCN

GCN
12

þ Vm

Gm ð1cÞ

where ECN
11 ; ECN

22 and GCN
12 are the Young’s and shear moduli of the

CNTs, Em and Gm are the corresponding properties for the matrix,
and the gj (j = 1,2,3) are the CNT efficiency parameters,
respectively. In addition, VCN and Vm are the volume fractions of

the CNT and the matrix, which satisfy the relationship of
VCN + Vm = 1.

It has been reported that the load transfer between the nano-
tube and polymeric phases is less than perfect (e.g. the surface
effects, strain gradients effects, intermolecular coupled stress
effects, etc.). Hence, we introduce the CNT efficiency parameter gj

(j = 1,2,3) into Eq. (1) to consider the small scale effect and other
effects on the material properties of CNTRCs. The values of gj will
be determined later by matching the elastic moduli of CNTRCs
predicted by the MD simulations with the prediction of the
extended rule of mixture in Eq. (1).

Unlike the functionally graded ceramic–metal materials [34], to
avoid abrupt change of the material properties in the functionally
graded CNTRCs, a linear variation of the CNT volume fraction in the
thickness beam direction is assumed and can readily be achieved in
practice [15]. Consequently, we assume the volume fraction VCN for
the top face sheet as

VCN ¼ 2
t1 � Z
t1 � t0

� �
V�CN ð2aÞ

and for the bottom face sheet follows as

VCN ¼ 2
Z � t2

t3 � t2

� �
V�CN ð2bÞ

in which

V�CN ¼
wCN

wCN þ ðqCN=qmÞ � ðqCN=qmÞwCN
ð2cÞ

where wCN is the mass fraction of CNTs, and qCN and qm are the den-
sities of CNT and matrix, respectively. It is evident that VCN ¼ 2V�CN ,
when Z = t0 (top surface) and Z = t3 (bottom surface) and VCN = 0
when Z = t1 and Z = t2. In such a way, the two cases of uniformly dis-
tributed (UD), i.e. VCN ¼ V �CN , and functionally graded (FG) CNTRCs
will have the same value of mass fraction of nanotubes. It is noted
that unlike the elastic properties, the load transfer between the CNT
and matrix does not affect the density of CNTRCs at a given location.
Therefore, no CNT efficient parameter is needed to modify the
CNTRC mass density which is defined by q = VCNqCN + Vmqm. As
the same in [14], three types of FG-CNTRCs, i.e. FG-V, FG-K and
FG-X, may be considered. For FG-V, Eq. (2a) is available, and for
FG-K, Eq. (2b) is available, and for FG-X, both Eqs. (2a) and (2b)
are adopted.

Similarly, the effective thermal expansion coefficients in the
longitudinal and transverse directions can be expressed by the
Shapery model [35]

a11 ¼
VCNECN

11 aCN
11 þ VmEmam

VCNECN
11 þ VmEm ð3aÞ

a22 ¼ 1þ mCN
12

� �
VCNaCN

22 þ ð1þ mmÞVmam � m12a11 ð3bÞ

where aCN
11 ; aCN

22 and am are thermal expansion coefficients, and mCN
12

and mm are Poisson’s ratios, respectively, of the carbon nanotube
and matrix. Note that a11 and a22 are also graded in the Z direction.
It is assumed that the material properties of nanotube and matrix
are functions of temperature, so that the effective material proper-
ties of FG-CNTRCs, like Young’s modulus, shear modulus and ther-
mal expansion coefficients, are functions of temperature T and
position Z. The Poisson’s ratio depends weakly on temperature
change and position and is expressed as

m12 ¼ V�CNm
CN
12 þ Vmmm ð4Þ

3. Governing equations

Consider a uniform beam of length L, width b, and thickness h,
with two pinned ends and resting on a two-parameter elastic
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