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a b s t r a c t

In this paper, an analytical solution is proposed for a pressurized cylindrical tube made of an orthotropic
membrane, with the orthotropy directions oriented at an arbitrary angle, not necessarily parallel to the
tube axis. The formulation is made in the framework of finite deformations and results in a system of
three non-linear equations, giving the final radius, length and rotation of the cross-sections of the tube,
in the deformed configuration. The set of equations is solved for balanced and unbalanced materials, with
various internal pressures and orientations of the membrane. The numerical results obtained are shown
to agree very well with those of an independent finite element code.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Tensile fabrics have been widely used in textile architecture for
more than half a century. Nowadays, very large structures are built
as assemblies of pieces of fabrics and among the materials used,
coated fabrics occupy a major place due to their interesting
mechanical properties: they are light, they can be easily folded
and deployed, and they are not too expensive to manufacture.

These fabrics are typically made of woven yarns encased in a
PVC coating and therefore present an anisotropic behavior due to
the warp and weft threads. Since they have very low bending
and compressive stiffness, they can only be used in tension. In or-
der to use them under other loading states, it is necessary to induce
a pre-stress by means of air pressure, as in the so-called air-sup-
ported and air-inflated structures. The subsequent discussion will
be limited to air-inflated structures only, also known as inflatable
or pneumatic structures, which are the scope of the present paper.

The inflatable tube is one of the most simple elements in inflat-
able structures technology. Such a tube can be used either as a sin-
gle beam or assembled with others in inflatable frames and more
complex structures.

The study of inflatable beams necessitates to distinguish two
successive stages: (i) in the first one, the beam is subjected to a suf-
ficiently high internal pressure, so as to induce the pre-stress in the
membrane and provide the beam with a bearing capacity, (ii) in
the second stage, the beam can be subjected to other external load-

ings which can be a combination of tensile, compressive, bending
or twisting loads.

Almost all the existing studies on inflatable tubes dealt with
bending or torsion loadings. Pioneering theoretical works are due
to Comer and Levy [1], Douglas [2] and Webber [3], who investi-
gated isotropic beams using Euler–Bernoulli’s kinematics. Main
et al. [4,5] undertook experimental works on the bending of inflat-
able beams and took account of the biaxial state in their analysis.
The shear effect in inflatable beams was considered by Steeves
[6] who developed a theory based on the minimum potential en-
ergy principle and gave the solution in terms of Green functions,
and by Fichter [7] who used Timoshenko’s kinematics and obtained
load–deflection formulae where the pressure appears explicitly in
the shear stiffness term. Adopting the same kinematics, Wielgosz
and Thomas [8,9] derived analytical solutions for inflated panels
and tubes, by writing the equilibrium equations in the pre-stressed
state, and taking into account the pressure as a following force. Le
van and Wielgosz [10] improved Fichter’s theory by using the total
Lagrangian form of the virtual work principle with finite displace-
ments and rotations. After linearizing the resulting nonlinear equa-
tions, they obtained linear formulae for isotropic beams where the
pressure appears explicitly both in the bending and shear stiffness-
es. Recently, Apedo et al. [11] went further using a 3D Timo-
shenko’s kinematics and derived their solutions for an
orthotropic fabric in finite displacements and small rotations. This
work was next extended to the buckling of an orthotropic beam by
Nguyen et al. [12]. Refinements of the previous formulations en-
abled Nguyen et al. [13] to derive the governing nonlinear equa-
tions for inflatable orthotropic beams and simple formulae for
the deflection and rotation.

0141-0296/$ - see front matter � 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.engstruct.2013.06.012

⇑ Corresponding author. Tel.: +33 251 125 549.
E-mail address: anh.le-van@univ-nantes.fr (A.L. van).

Engineering Structures 56 (2013) 1080–1091

Contents lists available at SciVerse ScienceDirect

Engineering Structures

journal homepage: www.elsevier .com/locate /engstruct

http://crossmark.crossref.org/dialog/?doi=10.1016/j.engstruct.2013.06.012&domain=pdf
http://dx.doi.org/10.1016/j.engstruct.2013.06.012
mailto:anh.le-van@univ-nantes.fr
http://dx.doi.org/10.1016/j.engstruct.2013.06.012
http://www.sciencedirect.com/science/journal/01410296
http://www.elsevier.com/locate/engstruct


In all the above-mentioned papers, the geometry of the inflated
beam is either assumed to be known or computed by means of lin-
ear elasticity formulae, as in Le van and Wielgosz’s paper [10] for
isotropic materials, and in Apedo et al’s paper [11] for orthotropic
materials. Whereas such linear formulae are sufficient in the con-
text of small deformations, they should be replaced by more accu-
rate formulae when there are finite deformations, as is the case
nowadays with modern fabrics which are able to bear very high
tensions.

The present work is devoted to the above-mentioned first stage
where the beam is subjected to an internal pressure only, with the
purpose of obtaining an analytical solution for a pressurized mem-
brane tube made of an orthotropic material. The main features of
the paper are: (i) the warp or weft direction of the membrane
can be oriented at an arbitrary angle, not parallel to the tube axis
(for convenience, use is made of the terms ‘warp’ and ‘weft’ to des-
ignate the in-plane orthotropy directions of the membrane); and
(ii) the obtained equations hold in finite deformations, in particular
finite rotations of the tube.

The paper is organized as follows. In Section 2, the problem will
be formulated in finite deformations for a finite-thickness ortho-
tropic tube and the equations will be derived considering a very
small thickness with respect to the tube radius so that the tube be-
comes a membrane tube. This will result in a small system of three
nonlinear equations, which can easily be solved by an iterative
Newton-type scheme to get the final geometry as well as the stres-
ses in the pressurized tube. In Section 3, the influence of the inter-
nal pressure and the orthotropy directions will be studied for two
materials, one is balanced and the other unbalanced. It will be
shown that when the warp or weft direction of the membrane is
not parallel to the tube axis, the tube undergoes a rotation around
its axis, rotation which varies as a nonlinear function of the inter-
nal pressure. Eventually, in Section 4, comparison with finite ele-
ment results will be made in order to validate the proposed theory.

Note that we consider an orthotropic homogeneous membrane,
rather than a fabric which is inhomogeneous due to its complex
microstructure. Phenomena specific to fabrics such as kinematics
of crimp interchange, shear jamming and yarn–yarn friction, will
not be considered as they are out of the scope of the paper. How-
ever, one may expect that the results obtained can be used for fab-
rics to a certain extent.

2. Analytical solution for an inflated orthotropic membrane
tube

2.1. Definition of the problem

The problem is formulated in finite deformations and one has to
distinguish between the reference and the final configurations of
the tube. Let the current position x of a particle of the tube in
the actual state be defined by the cylindrical coordinates r, h, z,
so that x = rer(h) + zez. The current cylindrical basis at point x is de-
noted b � (er(h), eh(h), ez), with er and eh parallel to the radial and
circumferential directions, respectively.

The position X of the same particle in the reference state is de-
fined by the initial values of r, h and z, denoted by R, H and Z, so
that X = Rer(H) + Z ez. The reference cylindrical basis at point X is
B � (er(H), eh(H), ez).

The reference geometry is a thick-walled tube of axis Oez, inner
radius A, outer radius B, thickness H = B � A, length L, and closed at
the ends Z = 0 and Z = L, as shown in Fig. 1.

It is assumed that the tube is made of an orthotropic material
with the orthotropy basis (en,e‘,et) in the reference configuration.
The normal direction en is equal to er(H) and the angle (around
er(H)) between the longitudinal direction e‘ and the tube axis ez

is denoted a, 0 6 a 6 180�.
The tube is free of stress in the reference configuration and let it

be subjected to an internal pressure p.

2.2. Deformation

It is assumed that the cross-sections of the pressurized tube re-
main planar and perpendicular to axis Oez, in such a way that the
tube remains cylindrical in the deformed state. The deformed
geometry is defined by the inner radius a, outer radius b, thickness
h = b � a and length ‘, which correspond to their initial values A, B,
H and L, respectively. The deformation of the tube is then defined
by the following relation giving the final cylindrical coordinates r,
h, z as functions of the initial coordinates R, H, Z:

r ¼ rðRÞ h ¼ Hþ bðR; ZÞ z ¼ zðZÞ ð1Þ

Functions r(R) and z(Z) correspond to the radial and axial
displacements, whereas function b(R,Z) has been introduced in
order to represent the circumferential displacement or the rota-
tion of the cross-sections around the tube axis, due to the fact
that the orthotropy directions do not coincide with the cylindrical
axes. The functions b(R,Z) and z(Z) have to satisfy b(R,0) = 0 and
z(0) = 0 if one considers that the end section Z = 0 does not
rotate.

2.3. Deformation gradient – Strains

Since the current position x of a particle of the tube is
resolved in terms of the reference basis B via x = rcosb
er(H) + rsinb eh(H) + z ez, the matrix of the deformation gradient
tensor can be expressed in basis B as

MatðF; BÞ ¼
krcosb� rsinbb;R �khsinb �rsinbb;Z
krsinbþ rcosbb;R khcosb rcosbb;Z

0 0 z;Z

2
64

3
75 with

kr �
dr
dR

; kh �
r
R
> 0 ð2Þ

The bijectivity condition J = detF = krkhz, Z > 0 leads to

krz;Z > 0 ð3Þ

The matrix of the Green strain tensor E = (FTF � I)/2 in the reference
basis is derived from Relation (2):

Fig. 1. Reference geometry of the tube.
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