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a  b  s  t  r  a  c  t

We  present  the  phenomenological  thermodynamic  modeling  of  binary  alloys  which  demonstrate  solubil-
ity of the  components  at high  temperatures,  and  form  intermediate  phase  near  equiatomic  composition
at  lower  ones  (the  so-called  sigma-phase).  Besides,  the  regular  solution  miscibility  gap  takes  place  also.
The nonequilibrium  thermodynamic  potential  is  written  out as  a sum  of  the  free  energy  of  regular  solu-
tion and  polynomial  term  of scalar  order  parameter  ϕ, which  describes  the  �-phase  ordering.  There  are
four parameters  in  the  model:  the energy  of regular  solution  mixing,  the  energy  of  �-phase  formation
at  zero  temperature,  and  the  widths  of temperature  and  concentration  intervals  of �-phase  existence  in
the alloy  with  frozen-in  random  distribution  of components.  Up  to now,  both  phase  transitions  which
take  place  in  a  number  of transition  metals  binary  alloys  (the  �-phase  formation  and  miscibility  in the
regular  solution)  have  been  treated  separately.  In present  work,  the  standard  technique  of phase  diagram
calculation  allows  us  to analyze  all  possible  phase  diagrams  which  may  arise  in  the  alloy.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Up to now, the most extended way of analytical description
of binary alloys phase diagrams is based on following scheme
[1]. First, one has to determine all possible phases in the system,
and second, to write out the thermodynamic potentials Gn(c,
T) as a function of concentration c and temperature T for each
phase numbered by index n. Then, the standard Gibbs procedure
allows one to draw out the phase diagram. While modeling,
thermodynamic potentials Gn(c, T) are usually being fitted by
polynomial spline—functions of concentration in combination
with logarithmic terms which account for the mixing entropy. This
requires experimental information concerning phase boundaries
and enthalpy of mixing at different temperatures. This scheme is
simple enough and allows one to use databases of universal form
[2]. At the same time, it possesses some disadvantages. The first
is a large amount of experimental information which is necessary
for the database. One has to know all phases in the system and
temperature and concentration ranges of their appearance. Also,
to fit the thermodynamic potentials, several points on each phase
boundary should be known. Thus, practically whole phase diagram
should be known, and the scheme serves to fit the known data. The
second one is using of so-called standard states—for some phases,
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one needs to know the thermodynamic potential at temperatures
and concentrations, for which the phase does not exist in the
experiment (i.e. is absolutely unstable). Thus, it is difficult to
estimate correctly the metastable area of the phase existence.

Alternative way  of thermodynamic modeling of binary phase
diagrams arises from the phenomenological Landau theory of phase
transitions [3].  The theory is based on the concept of order param-
eter, which corresponds to some symmetry of the system and
changes sharply at the phase transition point. For binary system,
the analytical calculation scheme looks as follows. First, one has to
write out the nonequilibrium thermodynamic potential G(c, T, ϕ)
as a function of concentration, temperature and order parameter
ϕ. The last is not obligatory single-component value, but here we
suggest so for simplicity. Then, the potential should be minimized
with respect to ϕ:

∂G

∂ϕ
= 0 (1)

Eq. (1) may  have several solutions ϕ1(c, T), ϕ2(c, T), . . . which rep-
resent several minima of G(c, T, ϕ). These solutions correspond to
possible phases in the system, and their temperature and concen-
tration ranges of existence are being determined automatically as
the ranges of existence of corresponding solutions. Then, the sub-
stitution

Gn(c, T) = G(c, T, ϕn(c, T)) (2)
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gives equilibrium thermodynamic potentials for all phases, and
one is able to draw out the phase diagram. The problem to con-
struct the nonequilibrium potential looks difficult as compared
with the traditional calculation scheme, but in some cases it
may  be solved successfully. The most natural way to write out
the nonequilibrium potential is statistical modeling. For example,
the use of Ising model allows to get the nonequilibrim poten-
tial of regular solution [4],  its combination with the Potts model
allows accounting melting and drawing out all binary diagrams
with limited solubility of the components [5].  Phenomenologi-
cal way of G(c, T, ϕ) construction can be used also. In present
work, we use it to model a binary alloy which demonstrates
tendency to the phase separation and, simultaneously, forms
intermediate phase near equiatomic composition (the so-called
sigma-phase).

2. Nonequilibrim thermodynamic potential

Consider A–B binary alloy, which possesses mutual solubility
of the components at high temperatures, demonstrate tendency
to phase separation and forms intermediate sigma-phase at lower
ones. While excluding the sigma-phase, the alloy behaves like a
solid regular solution, so that the nonequilibrium thermodynamic
potential consists of two terms

G(c, T, ϕ) = Greg(c, T) + Gadd(c, T, ϕ),

Greg(c, T) = εc(1 − c) + T{c ln(c) + (1 − c) ln(1 − c)},

Gadd(c, T, ϕ) = 12g
(

p(c, T)
2

ϕ2 − p(c, T) + 1
3

ϕ3 + 1
4

ϕ4
)

.

(3)

The first term is the free energy of regular solution, while the second
describes first order phase transition between phases with order
parameter ϕ = 0 and ϕ = 1. One can easily derive this inserting (3)
into (1).  Equilibrium free energies (2) for these phases are

Gϕ=0(c, T) = Greg(c, T), Gϕ=1 = Greg(c, T) + 2g
(

p(c, T) − 1
2

)
.

(4)

These values are equal to each other when

p(c, T) = 1
2

. (5)

This condition determines the line of the phase transition on the
c − T plane, when the spatial distribution of components is random
and frozen. We  will choose the p(c, T) function by following consid-
erations. Let us correspond the ϕ = 0 phase to the regular solution of
the components, and ϕ = 1 one to the ordered sigma-phase. In that
case, the order parameter should be interpreted as a volume part
of sigma-phase in the system. If the spatial distribution of compo-
nents is random and frozen, then the ordering should take place on
some cupola-like curve at the c − T plane. Therefore, the simplest
approximation is

p(c, T) = 1
2

+ [T − T0 + k(c0 − c)2], (6)

which provides the parabolic cupola. The point (c0, T0) is the
cupola’s maximum, and 2

√
T0/k is its width at zero tempera-

ture. For sigma-phase, c0 = 0.5, so that we got the model with four
phenomenological parameters ε, g, k, T0, which physical sense is
as follows. Value ε/2 is the Kournakov temperature [6] of true
solution; 2

√
T0/k is the width of concentration range of the

sigma-phase existence at zero temperature, if the spatial distri-
bution of components is random and frozen; T0 is the maximal
temperature of the sigma-phase; 2gT0 is the energy difference
between true solution and equiatomic sigma-phase at zero temper-
ature. This completes the construction of nonequilibrium potential.
Below, we used the temperature scale T0 = 1 and fixed the width

Fig. 1. The phase diagram with intermediate �-phase and �-phase above maximal
temperature of its existence. Parameters of the model are ε = 2, g = 0.125.

2
√

T0/k = 0.4, so that k = 25. Varying the two rest parameters, ε and
g, we calculated all possible types of binary phase diagrams with
intermediate sigma-phase. The results are presented in the next
section.

3. Phase diagrams

To calculate the phase diagram, one needs chemical potentials
of the A and B components in each phase. Those may  be obtained

Fig. 2. The temperature range of �-phase is limited from above by triple ˛–�–ˇ
equilibrium and true solution miscibility gap. Parameters of the model are ε = 2.5,
g  = 0.5.
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