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A B S T R A C T

A number of experimental studies of melt motion and droplet ejection caused by pulsed plasma load include the
measurements of the shape of surface after the solidification of target. The measured shape may be different from
the one during the heating stage because of melt motion. In present paper the evolution of this perturbations is
treated as capillary waves on the melt surface. The dispersion relation for capillary waves taking into account
viscosity and limited depth of liquid was used. The numerical estimations for the melt surface behavior are done
for tungsten samples irradiated at BETA facility.

1. Introduction

The powerful heat loads on the first wall and divertor plates are
expected at the next generation of the experimental fusion reactors [1].
Tungsten will be used as a material of the divertor surface because of
the high melting point [2]. However, even the tungsten surface melts
under the heat loads supposed to be in fusion reactor [3]. The melting
significantly increases the erosion of irradiated materials and the
growth rate of surface roughness. It could lead to the formation of
droplets and their emission from the surface to plasma and other
harmful to the plasma confinement and heating events [4]. The Kel-
vin–Helmholtz instability is one of the most discussed mechanism on
the above mentioned phenomena [5–8]. Burst of bubbles during boiling
is another common hypothesis [9,10].

The dynamic observation of the surface during the irradiation is
complicated by the short duration of the events, low magnitudes and
typical wave lengths of the surface shape perturbations and the flare of
the heated material or the plasma. The most of the experimental
measurements of the irradiated surface shape are carried out by the
“post mortem” analysis, while the shape may be drastically changed
during the cooling stage before the solidification [11,12]. The main
subject of the paper is theoretical study of the evolution of the molten
surface shape during the cooling stage. We will make the numerical
estimations for tungsten as one of the promising material for divertor
plates.

2. Capillary waves

We suppose that at the cooling stage there is no significant plasma
or gas near to the material surface. Perturbation excited during electron
beam irradiation can be expanded on set of eigenmodes of melt tung-
sten, which are surface and volumetric (sound) waves. The sound waves
emanate through substrate and not influence on the surface shape. The
surface tension is the main force driving surface wave (see below) so
such waves are the capillary waves. So the dynamics of the small per-
turbations of the melt surface could be described as the superposition of
capillary waves. Let's get the dispersion relation of the capillary waves
to calculate the dynamics. Assuming the smallness of the perturbation
amplitudes we will linearize all equations. The surface tension, visc-
osity and the finite depth of the molten layer will be taken into account.
We assume that the surface tension coefficient, the viscosity and the
depth of the molten layer are constant. Besides that we neglect the
influence of the magnetic field to the melt motion. Let's estimate the
volumetric Ampere's force (

→
=

→
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using the Maxwell equation ∇ ×
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→

H πj c4 / (we neglect the dis-
placement current because melt velocity is small in compare with speed
of light [13]):
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where B0 is the constant magnetic field, μ0 is the vacuum permeability,
λ is the perturbation wavelength and δB is the magnetic field pertur-
bation (hereinafter the SI units are used). The perturbation of the
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magnetic field may be estimated using the induction equation [13]:

∂
⎯→⎯

∂
= ∇ ×

→
×

⎯→⎯
+

⎯→⎯δ B
t

V B
μ σ

δ B( ) 1 Δ ,0
0 (2)

where t is the time,
→
V is the melt velocity, σ is melt conductivity. Let's

suppose that the left part of the equation is much less than the second
term of the right part. The condition is expressed by the following
formula:

≪λ
τ μ σ

1 ,
2

0 (3)

where τ is the oscillation period. Further, it will be shown that the
condition (3) is satisfied for the discussed experiments. Using the for-
mula (2) the magnetic field perturbation may be estimated:

∼δB μ σλVB .0 0 (4)

Using the expressions (1), (4) the condition of the smallness of the
Ampere's force in comparison with the rate of impulse density change:

≫
ρV
τ

σVB ,0
2

(5)

where ρ is the melt density. The simplified expression follows:

≪μ στV 1,A0
2 (6)

where =V B μ ρ/A 0 0 is the Alfvén velocity.
The linearized Navier–Stokes equation and continuity equation de-

scribe the capillary wave [14]:

∂
→

∂
= − ∇

→
+

→V
t ρ

p ν V1 Δ ,
(7)
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where p is the pressure and ν is the kinematic viscosity coefficient. Here
we assume that the liquid is incompressible. The sticking to the bottom
and the absence of momentum flux through the fluid free surface are
used as boundary conditions [14]:
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where z is the axis perpendicular to the surface, x and y are the parallel
ones, h0 is the depth of the molten layer, α is the surface tension
coefficient, ξ is the perturbation of surface. We consider 2-dimensional
motion of a liquid, as is commonly assumed for capillary waves (Vy=0
and the functions do not depend on the y). The ξ could be calculated
using the following expression:

∂
∂

= =
ξ
t

V zat 0.z (12)

The complex amplitude method allows to use the following dependence
on x and t:

→
∼ −V p ξ e, , ,x iωti k (13)

where k is the wave number and ω is the frequency. The dispersion
relation for the capillary wave follows:

Fig. 1. The tungsten sample irradiated at the BETA.

Fig. 2. The calculated tungsten surface temperature and melt depth vs. time. The heating
surface power is 8 GW/m2, the irradiation duration is 130 μs.

Fig. 3. The oscillation period and decay duration of the capillary wave vs. wave length at
15 μm-depth melt.
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