Fusion Engineering and Design 128 (2018) 122-125

journal homepage: www.elsevier.com/locate/fusengdes e

Contents lists available at ScienceDirect

Fusion Engineering and Design

" Fusion Engineering
and Design

A framework for the integration of the development process of Linux FPGA = |

System on Chip devices

Check for
updates

A. Rigoni”, G. Manduchi®”, A. Luchetta®, C. Taliercio”, T. Schroder”

@ Consorzio RFX (CNR, ENEA, INFN, Universita di Padova, Acciaierie Venete SpA), Padova, Italy

® Max-Planck-Institut fiir Plasmaphysik, D-17491 Greifswald, Germany

ARTICLE INFO ABSTRACT

Keywords:

System on Chip is a hardware solution combining different hardware devices in the same chip. In particular, the

FPGA XILINX Zynq solution, implementing an ARM processor and a configurable FPGA on the same chip, is a can-

System on chip
ADC
Timing systems

didate technology for a variety of applications of interest in fusion research, where FPGA fast logic must be
combined with CPU processing for high-level functions and communication. Developing Zynq based applications
requires the development of the FPGA logic using the XILINX Vivado IDE, mapping information between the

FPGA device and the processor address space, developing the kernel drivers for interaction with the FPGA device
and developing the high level application programs in user space for the supervision and the integration of the
system. The paper presents a framework that integrates all the above steps and greatly simplifies the overall
process. The framework has been used for the development of a programmable timing device in Wendelstein 7-X.
The development of new devices integrating data acquisition and timing functions is also foreseen for RFX-mod.

1. Introduction

The use of FPGA based solutions in control and data acquisition
systems (CODAS) for nuclear fusion devices has been in the past rather
limited if compared to other physics experiments such as accelerators.
This fact is mainly due to the different requirements: while in accel-
erators it is necessary to handle a very large amount of fast events from
detectors, requiring fast data reduction on the fly based on coin-
cidences, in fusion experiments a lower number of channels is used,
typically requiring the acquisition of input signals for data storage and
possibly real-time control. Therefore, fusion experiment use more
conventional electronic devices such as transient recorders, replaced in
recent long lasting experiments by Analog to Digital (ADC) devices
supporting a continuous output data stream. Moreover, the dynamics of
the phenomena controlled in real-time, such as plasma stability, require
in most cases a response time of the order of milliseconds, whereas the
control of the fastest phenomena such as vertical stabilization in toka-
maks require a response time of the order of 100 ps. These requirements
can be satisfied using the current computer technology making there-
fore the use of general purpose computers preferable over specialized
FPGA solutions. Developing FPGA solutions requires in fact skills and
expertise in the Hardware Description Languages (HDL) and hardware
interfaces. Considering also that the integration of custom FPGA sys-
tems in CODAS normally requires developing some kind of specialized

* Corresponding author.

communication protocol, the amount of required human resources to
implement such solutions is often unaffordable, especially in small la-
boratories. For this reason, FPGA solutions have been in the past limited
to specific applications in diagnostics [1,2]. A notable exception is
certainly represented by the RIO FPGA architectures [3] (Compact RIO
and Flex RIO) which provide an easy FPGA programming and in-
tegration via LabVIEW and have been widely adopted for plasma con-
trol [4] and other diagnostic applications [5]. This solution, proposed
by National Instruments, aims at leveraging the power of FPGA by re-
moving the main barriers in their usage, that is the expertise required in
HDL programming and interfacing with the rest of the system. This
solution is however quite expensive and closed to the specific choice in
hardware and in the programming environment. A new modern ap-
proach for the integration of high-level software components with the
power of the FPGA logic design is obtaining growing attention in the
market of embedded technologies and exploits the System on Chip
(SoC) solution that combines different hardware devices in the same
chip. The main hardware competitors leading the SoC FPGA market are
Intel/Altera and Xilinx, both proposing almost the same development
solutions but with their own proprietary software. In particular the
XILINX Zynq architecture [6], implementing an ARM processor and a
configurable FPGA in the same chip, is a valuable candidate technology
for a variety of applications of interest in fusion research, where FPGA
fast logic can be combined with software functions carried out by a CPU

E-mail addresses: andrea.rigoni@igi.cnr.it (A. Rigoni), gabriele.manduchi@igi.cnr.it (G. Manduchi).

https://doi.org/10.1016/j.fusengdes.2018.01.042

Received 9 June 2017; Received in revised form 28 December 2017; Accepted 17 January 2018

0920-3796/ © 2018 Elsevier B.V. All rights reserved.


http://www.sciencedirect.com/science/journal/09203796
https://www.elsevier.com/locate/fusengdes
https://doi.org/10.1016/j.fusengdes.2018.01.042
https://doi.org/10.1016/j.fusengdes.2018.01.042
mailto:andrea.rigoni@igi.cnr.it
mailto:gabriele.manduchi@igi.cnr.it
https://doi.org/10.1016/j.fusengdes.2018.01.042
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fusengdes.2018.01.042&domain=pdf

A. Rigoni et al.

for high level functions and communication.

A considerable number of heterogeneous hardware from many
vendors have been released profiting of the high integration of SoC
devices. The main advantages that these chips brings to the program-
mable logic are the possibility to interface and share hardware features
that are typical of a complete system such as the DMA controller and
external interfaces like Ethernet or SATA.

Many software solutions have been also proposed, to guide the
developer through the non-trivial mechanisms of the FPGA to system
interfacing, as well as covering different programming approaches:
from low level synthesis of Verilog and VHDL hardware description, to
the higher level toolchains that compile real programming languages
like SystemC OpenCL and others [7,8].

In this paper we present yet another choice named Anacleto
(Another auto config for logic evaluation toolchains), particularly tar-
geted to the GNU Linux embedded devices, that has been developed by
RFX consortium and aims at proposing a unified standard workflow to
the FPGA developer for programming both the logic and the software
components in a uniform and portable way.

It is worth noting that in the development of Anacleto SoC projects
the knowledge of HDL, unlike other solutions such as the National
Instrument RIO LabView interface, is not hidden by the framework. The
aim of this framework is indeed not to provide a new programming
interface, adding another layer of logic, but to ease the development
process with established well known open-source build tools. In this
way Anacleto can be a way to access the low level machinery of the
FPGA programming easily and uniformly, and a much cheaper solution
in respect of RIO. Moreover, at this low abstraction programming level,
many of the features that are usually involved are already provided free
of charge by the chip vendors or with a reasonable license fee by ex-
ternal contributions, keeping a door open to a wide market of existing
solutions.

The first candidate applications for SoC devices are timing systems,
data acquisition preprocessing and fast computation. Timing systems
represent a classical field of applications for FPGAs and have been
implemented both in custom systems [9] and commercial products
[10]. A typical timing application uses a synchronization clock signal
distributed, normally via fiber optic, to all the timing devices and
possibly propagating asynchronous events. The FPGA provides the
generation of the required timing signals (clocks, triggers, ...) based on
current configuration loaded in the system using some kind of hardware
interface such as PCI. A processor would introduce in this case more
flexibility in the management of the configuration, letting, for example,
the configuration be uploaded via the network.

Integrating configurable FPGAs in data acquisition would provide
much more flexibility in data management introducing features not
currently supported by ADC devices. An example is the possibility of
managing deferred triggers communicated via network. Using the
network to communicate triggers in data acquisition introduces delays
that may compromise the precision in the reconstruction of the ac-
quired signal. However, if a trigger message also carries the exact
trigger time, and assuming that all devices have a precise knowledge of
time (e.g. using IEEE 1588 timing protocol), it is possible to provide a
correct reconstruction of the signal using an internal circular buffer
maintaining a signal history lasting at least the delay in trigger com-
munication [11]. The use of a configurable FPGA in data acquisition
could also allow a significant reduction of the required front end when
integrated signals from electromagnetic probes are acquired. In this
case it would be possible to avoid analog integration before data ac-
quisition moving integration to FPGA processing during acquisition.

Fast computation carried out by FPGA allows using more sophisti-
cated algorithms in real-time plasma control retaining at the same time
the flexibility provided by a computer system. The same approach could
be used for new data processing algorithms such as feature detection
from acquired video frames. In this case the processor would supervise
data transfer and the FPGA would carry out intensive computing for

123

Fusion Engineering and Design 128 (2018) 122-125

feature detection. It is worth stressing the fact that FPGA solutions are
more difficult to develop in respect of CPU based ones, and therefore
the latter is preferred, provided it can satisfy the required timing con-
straints. As a rule of thumb, CPU based solutions should be considered
when the order of magnitude of the required reaction time of the system
is 100 ps or larger. Shorter times normally require FPGA implementa-
tions, however other factors may affect the choice, such as memory
access issues that may reduce performance regardless the computa-
tional power, as happens also in large distributed computation carried
out by General purpouse Graphical Processor Units (GGPUs) [12].

As for other FPGA solutions, SoC systems require skills and ex-
perience. For example, developing Zynq based applications requires (1)
the development of the FPGA logic, (2) mapping information between
the FPGA device and the processor address space, (3) developing the
kernel driver for interfacing user software and the FPGA device and (4)
developing the high level software applications in user space for the
supervision of the system and its integration in the central CODAS. For
this reason we have implemented a framework that integrates the above
steps. The framework, described in the next section, makes the overall
process easier, especially the integration of the FPGA components and
the processor by coordinating all the required tools and by providing a
set of templates that can be adapted to the specific application.

2. Framework components

Anacleto uses the Autotools [13] build infrastructure to organize the
most general FPGA workflow acting like a standard toolchain compi-
lation led by GNU make targets. The development process remains
quite complex because many components in the final device board must
be orchestrated (i.e. the kernel configuration, the customization of
drivers to handle the newly created device, and so forth) but never-
theless the compilation is managed almost in automatic manner and,
once the project is properly defined, all the steps are covered by Ma-
kefile targets that can be chained in a single make run. In order to
develop a SoC application, it is necessary firstly to select the hardware
system. Because we decided to make use of the Xilinx Zynq devices, as a
first attempt, three low-cost solutions have been considered: RedPitaya
[14], ZedBoard [15] and Parallella [16]. RedPitaya is intended to be
used as a stand-alone system for handling digital and analog I/O sig-
nals. This board hosts ready to use ADC and DAC components and
therefore could result best suited for developing small self-contained
applications, but for the same reason it shows a reduced flexibility in
respect of the other two for the configuration of the I/0 pins. The other
boards are intended to be hosted in a carrier board and therefore mount
no additional I/0 devices. In particular, Parallella is targeted towards
computing intensive applications and hosts an additional processor
with 16 cores.

Several other software components, all free of charge, are required
for developing a SoC application an deploying it into the target board.
First of all, it is necessary to download from XILINX the Integrated
Development Environment (IDE) tool VIVADO for HDL programming
(Verilog and VHDL are the supported languages). In order to be used on
a specific target, VIVADO requires a target-specific configuration, pro-
vided by the board developer, which specifies how the processor is
configured in that particular board. Currently only Red Pitaya config-
uration is managed in the framework, but it is foreseen that config-
uration files from Zed Board and Parallella will be included, adding the
choice of the target board in the configuration steps. VIVADO provides
a set of configurable Intellectual Property (IP) components that carry
out the connectivity between the processor (dual core ARM Cortex A9
in the Zynq chip mounted on Red Pitaya) and the FPGA application.
When no DMA is involved, communication between the processor and
the FPGA application is carried out by a configurable number of 32 bit
registers and, optionally, one or more interrupt lines. When the de-
veloper creates a new project for a FPGA application, the IDE creates a
set of IP components, carrying out the handshaking with the internal



Download English Version:

https://daneshyari.com/en/article/6743300

Download Persian Version:

https://daneshyari.com/article/6743300

Daneshyari.com


https://daneshyari.com/en/article/6743300
https://daneshyari.com/article/6743300
https://daneshyari.com

