
Contents lists available at ScienceDirect

Fusion Engineering and Design

journal homepage: www.elsevier.com/locate/fusengdes

TokSearch: A search engine for fusion experimental data

B.S. Sammuli⁎, J.L. Barr, N.W. Eidietis, K.E.J. Olofsson, S.M. Flanagan, M. Kostuk,
D.A. Humphreys
General Atomics, 3550 General Atomics Ct, San Diego, CA, USA

A R T I C L E I N F O

Keywords:
Apache spark
Big data
Data archive
Parallel processing

A B S T R A C T

At a typical fusion research site, experimental data is stored using archive technologies that deal with each
discharge as an independent set of data. These technologies (e.g. MDSplus or HDF5) are typically supplemented
with a database that aggregates metadata for multiple shots to allow for efficient querying of certain predefined
quantities. Often, however, a researcher will need to extract information from the archives, possibly for many
shots, that is not available in the metadata store or otherwise indexed for quick retrieval. To address this need, a
new search tool called TokSearch has been added to the General Atomics TokSys control design and analysis
suite. This tool provides the ability to rapidly perform arbitrary, parallelized queries of archived tokamak shot
data (both raw and analyzed) over large numbers of shots. The TokSearch query API borrows concepts from SQL,
and users can choose to implement queries in either Matlab™ or Python.

1. Introduction

Fusion experiment archival systems collect and store large volumes
of data, both on a per shot basis and in aggregate across many shots.
DIII-D, for example, has run over 170,000 shots, each of which, in re-
cent years, has consisted of tens of gigabytes of data. A common re-
search workflow is to perform detailed analysis of a particular shot
using typically 10–100 signals. However, if analysis is needed on data
spanning many shots, such as for machine learning, the throughput
achieved by retrieving and processing data serially may prove to be
untenably slow. When performing such analyses, it quickly becomes
apparent that a principled approach to parallelizing both data retrieval
and processing is needed. TokSearch, part of the General Atomics
TokSys control design and analysis suite [1], aims to provide a con-
venient, highly parallelized environment in which researchers can
search for relevant data and apply arbitrary analysis to it.

2. Specifications

The primary goal for TokSearch is to enable the traversal of tens to
hundreds of thousands of shots, sufficiently rapidly and efficiently to
support large-scale database studies developed on demand. This general
goal and the specific use cases envisioned impose many desirable and
required design features, including interface characteristics, speed of
execution, deployment, data handling, and programming language se-
lections. The resulting requirements are described in more detail in the

sections following.

2.1. Result types

TokSearch was designed with three primary use cases in mind:

1. Perform a query that returns a result set that fits in memory on the
client host.

2. Perform a query that generates a large data set and then persists the
result to disk.

3. Perform a query and cache the results in cluster memory for sub-
sequent analysis.

2.2. Programming language options

In an effort to provide as convenient an environment as possible,
TokSearch was designed to support two languages that are commonly
used in the fusion community: Matlab and Python. Although the
TokSearch API borrows concepts from SQL, all queries are constructed
entirely in one of these two languages and then executed either in batch
mode or from an interactive REPL (read-eval-print-loop) environment.

2.3. Deployment options

TokSearch works best on a dedicated cluster with distributed sto-
rage. However, TokSearch was designed to be able to deploy on a single

https://doi.org/10.1016/j.fusengdes.2018.02.003
Received 9 June 2017; Received in revised form 31 January 2018; Accepted 1 February 2018

⁎ Corresponding author.
E-mail address: sammuli@fusion.gat.com (B.S. Sammuli).

Fusion Engineering and Design 129 (2018) 12–15

0920-3796/ © 2018 Published by Elsevier B.V.

T

http://www.sciencedirect.com/science/journal/09203796
https://www.elsevier.com/locate/fusengdes
https://doi.org/10.1016/j.fusengdes.2018.02.003
https://doi.org/10.1016/j.fusengdes.2018.02.003
mailto:sammuli@fusion.gat.com
https://doi.org/10.1016/j.fusengdes.2018.02.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fusengdes.2018.02.003&domain=pdf


host and take advantage of multiple CPU cores on that host. This way,
TokSearch can be utilized without the need for a multi-computer
cluster.

2.4. Data sources

TokSearch is designed to abstract various types of data sources using
a common interface. As of this writing, the TokSearch supports data
retrieval from:

1. PTDATA – a DIII-D-specific archive format
2. MDSplus – both thin and thick clients
3. Parquet files – See discussion in Section 4.2

Support for HDF5 (Hierarchical Data Format) is planned as a future
upgrade. This would enable TokSearch to interact with the ITER
CODAC archiving format [2].

2.5. Flexibility and scalability

TokSearch is designed to flexibly interchange its underlying paral-
lelization technology. Currently the Python API supports Apache
Spark™ [3], which is a cluster-computing framework that runs on
commodity hardware. The Matlab API supports use of both the Matlab
Parallel/Distributed Computing toolbox and Spark.

Another goal for TokSearch is to achieve horizontal scaling. That is
to say, to increase the shot-processing rate as a linear function of the
number of cluster nodes (or cores). We provide a demonstration of this
later during the discussion of performance results.

3. Search semantics

TokSearch represents the search domain of a query as a table
(Fig. 1). This table is similar to a view in a traditional relational data-
base in that the data for each column may be physically stored in dis-
parate locations and is only materialized upon query execution. Each
row in the table contains the data for a single shot (or shot segment),
and each column represents a signal. The data type of the columns is
arbitrary, but will typically consist of a time series structure with data
and times fields.

Each signal need not be stored in the same location; the TokSearch
API allows for signals from multiple sources to be fetched during a
single query.

Fig. 2 illustrates at a high level the per-row algorithm executed by
TokSearch for each shot.

1. For a row r each signal si is fetched from a data source.
2. r is processed such that a set of derived quantities are appended to it,

resulting in a new row R (Fig. 3). Appending intermediate results at
this stage allows multiple subsequent calculations to make use of the
derived quantities without recalculation.

3. A user-defined filter w=w(R), analogous to the where clause in an
SQL query, is applied to R.

4. If the row matches, that is, if w(R) returns a Boolean TRUE, then the
query appends data to the result set. The fields C= {c1,…, cL} in the
result set are defined as a list of either strings specifying fields in R,
or as functions that perform additional user-defined transforma-
tions. In other words, each field cj in C can be one of the following:

• A signal from the table with, for example, sub-fields times and data;

• A derived value (as calculated in step 2 above);

• A value returned by applying a user-supplied function to R.

Using the notation defined above, we can now express a TokSearch
query in pseudo-SQL:

SELECT c1, …, cL
FROM R
WHERE w(R)== true AND shot in shots;

4. Parallelization and data locality

TokSearch queries can be run in a single thread on a single host, as
shown in Fig. 4 below. This is often useful for debugging a query on a
small subset of the total search domain.

TokSearch executes in parallel by simply running multiple instances
of the single-threaded scan, each with a partitioned subset of the total
shot list. Fig. 5 illustrates this.

As discussed in Section 2.5, TokSearch queries will run on multiple
types of clustering environments. In all cases the basic architecture is to
have a master process that interacts with one or more parallel workers,
each of which may be distributed across multiple host computers.

4.1. Network-based data retrieval

The simplest means of parallelizing data retrieval is for each worker

shot s1 … sn

1 [times, data] … [times, data]
… [times, data] … [times, data]
M [times, data] … [times, data]

Fig. 1. An illustration of a TokSearch table. The query author provides a list of n signals
{s1, …, sn} which are represented as columns, and M shots.

Fetch Signal
Data

Append derived data

Apply where filter

Take fields from R and/or
calculate new quantities

Matches?

Yes

r

R

R

process_shot

Append to results set

C

Fig. 2. High level overview of the TokSearch query execution sequence applied to each
shot.

Function dj Transformed Row

--- r = 0 = {s1, …, sn}
d1 1 = {s1, …, sn, d1 0)}
d2 2 = {s1, …, sn, d1 0), d2 1)}
… …
dN R = N = {s1, …, sn, d1 0), …, dN N-1)}

Fig. 3. Given a list of functions {d1,…, dN}, during query execution each dj will be applied
sequentially, appending the result onto an intermediate row ρj. The previous intermediate
row in the transformation, ρj-1, is available to dj. The resulting row R is then available to
all subsequent query execution steps.

B.S. Sammuli et al. Fusion Engineering and Design 129 (2018) 12–15

13



Download English Version:

https://daneshyari.com/en/article/6743340

Download Persian Version:

https://daneshyari.com/article/6743340

Daneshyari.com

https://daneshyari.com/en/article/6743340
https://daneshyari.com/article/6743340
https://daneshyari.com

