
Contents lists available at ScienceDirect

Fusion Engineering and Design

journal homepage: www.elsevier.com/locate/fusengdes

Hierarchical dynamic containers for fusion data

David Fridrich⁎, Jakub Urban
Institute of Plasma Physics of the CAS, Za Slovankou 1782/3, 182 00 Prague 8 Libeň, Czech Republic

A R T I C L E I N F O

Keywords:
Data exchange
High performance computing
Integrated modelling
Data processing
Open-source

A B S T R A C T

Scientific data can be naturally organized into hierarchical tree structures. One can find several examples of such
a hierarchy, for example XML or JSON for general purpose and specifically HDF5 for scientific data. Data types
in the EU-IM and IMAS frameworks are also organized into trees. Similarly, experimental data from fusion
experiments have tree structures. We propose a new tree-structured data communication platform oriented
mainly for integrated modelling and experimental data processing. This effort is part of our “Data Access and
Provenance tools for the exploitation of EUROfusion experiments project” EUROfusion Engineering Grant.

Our Hierarchical Dynamic Containers (HDC) library provides a similar functionality for in-core, shared
memory communication as HDF5 does for files. Thus, the library enables fast yet easily manageable data ex-
change within multiple numerical codes (typical examples are integrated modelling workflow actors). HDC
enables a zero data copy mechanism even across programming languages and processes. The tree structure is
built around key-value storages, managed by a plug-in system. Thus users can choose from a variety of existing
solutions of the underlying storage, including private, shared or distributed memory, persistent files or data-
bases.

The core library is written in C++11, highly leveraging the Boost library, and provides bindings for C,
FORTRAN and Python (other languages are foreseen). The intent is to provide a clean, simple and universal API,
that can be also used for unified access of files or databases. HDC is planned to be used in IMAS and for
COMPASS, JET, MAST-U and TCV databases.

1. Introduction

In past two decades, computer hardware has evolved dramatically,
CPU performance and memory capacity increased by orders of magni-
tude. However, the size of synthetic and experimental data has also
grown significantly, so nowadays in order to utilize all available com-
putational power, the demands on code developers and the code itself
have grown rapidly. For effective work, large amount of scientific data
have to be decoupled into smaller tasks distributed among multiple
processors or even computational cluster nodes. In such cases, the ef-
fectiveness of data exchange becomes one of the main concerns.

However, having a rapid communication library would not suffice.
Especially for integrated modelling, the data exchange has to be stable,
easily available and fault tolerant. To be really helpful, the library has
to be easy to use, which does not mean only to have a simple
Application Programming Interface (API), but also to offer commonly
used paradigms for data organization. For fusion data, the most natural
way is organizing data into hierarchical structures or trees. One can find
several examples of tree-like data organization. A number of file for-
mats build on tree structures, e.g. XML, JSON and especially HDF5 [1],
which has become de facto standard for scientific data (de-)serialization

to files. Specifically within the fusion community, we should mention
EUROfusion Integrated Modelling (EU-IM) [2], Integrated Modelling &
Analysis Suite (IMAS) [3] projects aiming for integrated modelling and
scientific data handling systems like COMPASS DataBase [4] or
MDSplus [5,6], where data are also organized into trees. Simple ex-
ample of such a hierarchical data structure can be seen in Fig. 1, which
shows a schema of a simplified magnetics IMAS IDS (interface data
structure).

Further, the data communication library should be flexible and
runtime oriented in order to prevent repeated recompilation of large
blocks of code due to minor changes in the data structure. The whole
solution should be easily extensible, scalable and should provide a
simple installation procedure. Last but not least, the data communica-
tion platform should provide bindings to all programming languages
commonly used within the scientific community and should support
(de-)serialization from/to common data file formats and databases.

The primary use case we target on is fast in-core data exchange for
integrated modelling and data analysis, including EU-IM and IMAS
applications. On top of that, an appropriate design can naturally enable
to unify in-core communication with data access. Since data are typi-
cally loaded from or stored to files or databases, we can reduce the

https://doi.org/10.1016/j.fusengdes.2018.02.053
Received 22 June 2017; Received in revised form 15 February 2018; Accepted 15 February 2018

⁎ Corresponding author.

Fusion Engineering and Design 129 (2018) 68–72

0920-3796/ © 2018 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/09203796
https://www.elsevier.com/locate/fusengdes
https://doi.org/10.1016/j.fusengdes.2018.02.053
https://doi.org/10.1016/j.fusengdes.2018.02.053
https://doi.org/10.1016/j.fusengdes.2018.02.053
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fusengdes.2018.02.053&domain=pdf


number of tools needed for a whole scientific code/workflow. The li-
brary has to be convenient and productive even for very basic use cases,
such as working with data within a simple, single-developer project,
while still well scalable to large projects. This effort is part of our Data
Access and Provenance tools for the exploitation of EUROfusion ex-
periments project EUROfusion Engineering Grant.

Finally, we stress that the main intent of our effort is neither to
create a new data standard nor a new persistent storage technology. We
rather propose to establish a well specified abstraction for existing data
models and, at the same time, a software library that will effectively
work with this abstraction, i.e. with all the mentioned standards and
formats. More specifically, available tools will be reused and only
wrapped around in order to provide a single unifying API where ap-
propriate.

2. Design

Based on the design goals and requirements described in the pre-
vious chapter and also on the most key design aspects of already ex-
isting successful systems like MDSplus or IDAM, we have implemented
a data communication library named HDC—Hierarchical Dynamic
Containers. This library is described in details in the following text.

The library itself consists of two layers both built on well-known
abstractions. The tree structure is used for the frontend, because this
concept of data organization is well established in scientific commu-
nity. For the data storage layer (backend), we use the key-value store
(hash map) abstraction. Multiple existing solutions for storing key-
value pairs can be found, each of them providing a unique set of fea-
tures. There are very fast hash maps, intended to be used within private
or shared memory, or slower systems offering communication among
multiple computers (i.e. via network) or data persistence. Moreover, the
APIs of key-value stores are concise and consist of small number of
functions or methods, which enables to quickly change the backend
using a plugin system. Hence, one can always select the proper backend
for a given purpose. The HDC library can be easily extended to support
more storage backends using such a plugin system. The extension of
supported data storages is straightforward: most data storage plugins
would fit into a hundred lines of C++ code. In the current state, the
used storage plugin can be configured from a JSON configuration file,
command-line options or directly from the code in run-time. Support
for using different plugins for different parts of data is envisaged.

Currently, the HDC library supports two key-value storages:
std::unordered_map for rapid data exchange within the private
memory and Yahoo MDBM for shared memory, inter-process commu-
nication. In run-time support for several other backends, allowing op-
eration in distributed memory systems like computer grids or cloud
computing platforms, will be added in the near future.

The HDC library features a sufficient, yet not exhausting set of
supported data types similar to Python, i.e. list, (ordered) dict, empty

node and a subset of NumPy [7] data types. One can use scalars and
arrays of commonly used numerical types (signed and unsigned integer,
float, double, Boolean) and strings. In the tree hierarchy, these types
represent leaf nodes. Parent nodes can be either an ordered map or a
list. The type system also includes an empty (null) node type and re-
ference to data with external ownership. This is fundamentally an
identical type system as in Conduit [8].

Note that flexible, cross-language function interfaces can be built
using HDC. This would be similar to Python, which uses tuple and
dict types to work with variable number of arguments or keyword
arguments. This could, for example, complement systems like f2py or
simplify the fc2k machinery in IMAS.

Another key aspect of the design is the orientation on runtime
usage. In contrast with UAL [9], which uses complex, pre-compiled C
structures or FORTRAN derived types for data organization into three
hierarchy, HDC adopts the approach used in scientific databases or
HDF5 files, where the data are referenced by string uniform resource
identifiers (URIs). In the HDC case, this string will be most often the
path within the hierarchy, like in HDF5 files or POSIX file systems. For
example, the path of the data for z-component of the first array member
of position of second flux_loop in magnetics structure illustrated in
Fig. 1 can be written in the following format: magnetics/flux_loop
[2]/position[1]/z.

For users, our approach provides an additional flexibility, devel-
opment agility and significantly reduced need for bookkeeping of inter-
dependencies of source codes (APIs) and binary objects (ABIs). For HPC
developers and system administrators, the approach significantly re-
duces the development and maintenance time and the overhead needed
for any change in the data model because there is no necessity to re-
compile the library and, subsequently, the users’ codes. The compliance
with given data specifications, such as IDS or CPO types, can be still
maintained and even enforced if necessary by implementing an ap-
propriate validation plugin. Note that run-time validations offer more
flexibility over compilation time, static type checking, because the va-
lidation system has access to the actual data.

Using the string for data referencing also enables easy extension of
functionality, including support for multiple different storages at a time
or accessing data from files. For example, for a direct HDF5 file data
access, one could specify the protocol and the file path (this is not yet
implemented in HDC), e.g.: “file+hdf5:///path/to/data/fi-
le.h5:group/dataset”.

Although the presented library is especially designed for fast run-
time data exchange, it should also provide a way to make the data
persistent. Currently, JSON and HDF5 (de-)serialization options are
available. The complete data persistence is currently possible for MDBM
plugin because the MDBM database can be saved into a file, which,
together with its path and the key of the root node, makes the data
completely persistent. This is, however, not well suited for long-term
storage as the stored data are system/version dependent.

Fig. 1. Diagram showing part of the magnetics IDS object structure. For sake of simplicity nodes representing errors were omitted.

D. Fridrich, J. Urban Fusion Engineering and Design 129 (2018) 68–72

69



Download English Version:

https://daneshyari.com/en/article/6743362

Download Persian Version:

https://daneshyari.com/article/6743362

Daneshyari.com

https://daneshyari.com/en/article/6743362
https://daneshyari.com/article/6743362
https://daneshyari.com

