Fusion Engineering and Design 129 (2018) 130-133

journal homepage: www.elsevier.com/locate/fusengdes e

Contents lists available at ScienceDirect

Fusion Engineering and Design

" Fusion Engineering
d Design

Software parallelization of a probabilistic classifier based on Venn R

Check for

Prediction: Application to the TJ-II Thomson Scattering s

F.J. Martinez”, J. Vega®, S. Dormido-Canto?, I. Pastor”, E. Fabregas™", G. Farias®

2 Departamento de Informdtica y Automdtica, Universidad Nacional de Educacién a Distancia (UNED), Madrid, Spain

® Laboratorio Nacional de Fusién, CIEMAT, Avda. Complutense, 40, 28040 Madrid, Spain
€ Pontificia Universidad Catolica de Valparaiso, Avda. Brasil 2147, Valparaiso, Chile

ARTICLE INFO ABSTRACT

Keywords:

Venn Predictors
Parallelization
Probabilistic classifier
Thomson Scattering

One of the recurring problems encountered in the development of automatic classification problems is the so-
called “curse of dimensionality”. Procedures that are computationally manageable in low dimensional spaces can
become unfeasible in spaces of hundreds of dimensions due to the need of long computational times. This paper
shows the parallelization of a probabilistic classifier based on Venn Predictors (VP). VP determine a probability
interval to qualify how accurate and reliable each individual classification is. The parallelized code has been

applied to the classification of the images from the CCD camera of the TJ-II Thomson Scattering. The aver- age
probability and probability interval are a very efficient prediction from the prediction perspective.

1. Introduction

TJ-II discharges generate plasmas for a maximum time of 0.35 s and
therefore, collect a large amount of information. It is necessary to have
fast and effective classifiers due to the large amount of collected data.
When the performance of classifiers for data processing needs to be
increased, the use of high performance computing (HPC) [1] could be a
potential solution. Parallel processing involves many methods that go
from parallel architectures and parallel algorithms to parallel pro-
gramming languages and performance analysis, to mention but a few.

The curse of dimensionality, also known as Hughes effect, refers to
various phenomena that occur when large numbers of samples have to
be processed. These phenomena do not occur when working in low
dimensions spaces. When the space dimensions increase, the space
volume increases too and it does so very rapidly. The curse of di-
mensionality together with overfitting are the two main problems
linked to the classification tasks. The phenomenon argues that if a fixed
number of samples are available, then the predictive capacity of a
classification algorithm decreases when the dimensions increase. In this
sense, for classification problems, increasing the number of dimensions
is equivalent to increasing the number of characteristics of the vectors.
It is easy to think that a greater number of characteristics will suppose
more information and, therefore, a better prediction. The fact is that the
curse of dimensionality indicates the opposite: the importance is not in
the characteristics quantity but in their relevance in the classification.
In a learning algorithm, there may be two limitations such as the

* Corresponding author.
E-mail address: efabregas@bec.uned.es (E. Fabregas).

https://doi.org/10.1016/j.fusengdes.2018.01.066

number of training samples and the computational time. When a large
scale classification problem is addressed, in some cases the samples
handled are in the order of millions with a variety of different dimen-
sions.

In the area of machine learning, the results improve if the system is
able to calculate a reliability index associated with prediction. In some
areas such as medical diagnosis it is very important to have a quality
index of the prediction. For determining this index it is necessary to
apply Venn Predictors (VP) [2]. The principal advantage of VP is to
qualify the predictions with a probability interval. This measure is not
just a probability value as in a Bayesian classifier. This can be seen as a
probability error bar for the prediction. In addition to this, VP are well
calibrated which means that the probability is related to a frequentist
justification from the data. The only assumption required for VP is that
the data distribution is an independent identical distribution (i.i.d. as-
sumption). However, to achieve their goal the VP need many more
computational operations.

There are many algorithms of automatic learning that allow making
estimations classification. However, many of them lack a measure of
confidence to evaluate the error in the prediction. For a new example, it
is necessary to have an algorithm that provides a probability distribu-
tion for each possible label as VP do.

The classification is satisfied calculating the probability of each of
the possible classes involved in the calculation. The calculations ob-
viously grow and make the VP computationally inefficient. Fig. 1 shows
the increase in the number of operations while using VP when the

Received 31 May 2017; Received in revised form 26 December 2017; Accepted 26 January 2018

0920-3796/ © 2018 Elsevier B.V. All rights reserved.


http://www.sciencedirect.com/science/journal/09203796
https://www.elsevier.com/locate/fusengdes
https://doi.org/10.1016/j.fusengdes.2018.01.066
https://doi.org/10.1016/j.fusengdes.2018.01.066
mailto:efabregas@bec.uned.es
https://doi.org/10.1016/j.fusengdes.2018.01.066
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fusengdes.2018.01.066&domain=pdf

F.J. Martinez et al.

80000 A
70000 72000 sples./vP
. - '
4 60000 - P
c -
.0 e
‘@ 50000 - P
o e
o s
O 40000 ~ -
o P _ .- 1000sples./vP
2 30000 4 -7 I
L IS
20000 - .- 500 sples./VP
_ 2000 sples./trdnal.
40000 - 1000 sples./trdnal.
0 y 500sples./trdnal.
2 3 4 5 6 7

No. of Class.

Fig. 1. Increase of calculations.

number of different classes and different samples increases as well.

This predictor characteristic is originated by the underlying algo-
rithms. This work focuses on the VP parallelization to minimize the
impact of the increase in the number of operations. The main con-
tributions of this work can be summarized as follows: (a) Study and
adaptation of three parallelization algorithms; (b) Application of par-
allelism to probabilistic Venn Predictors.

The rest of the paper is structured as follows. Section 2 introduces
the Venn Predictors and underlying algorithms applied. Section 3 shows
the algorithms parallelized. Section 4 presents the parallel im-
plementation and experimental sets. Section 5 details the results ob-
tained and summarizes the main conclusions.

2. Venn Predictors and underlying algorithms

To introduce Venn Predictors [3], we begin with a training set of the
form {21, 25, ..., 2,1}, where each z; € Z is a pair (x;y;) where x; is an
object and y; is a label. For a new object x,, we intend to estimate its
probability of belonging to each class Y;€{Y;, Y5, ..., Y}. Venn Pre-
dictors assign each of the possible classifications Y; to x, and divide all
examples {(x1, ¥1), ..., (xn, Y;)} into a number of categories based on a
taxonomy. A taxonomy is a sequence A,, n = 1, ..., N of finite measur-
able partitions of the space Z™ x Z, where Z™ is the set of all multisets
of elements of Z of length n. We will write A,,({z1, ..., 2.}, 2 for the
category of the partition A, that contains ({21, ..., 2,}, 2. Every tax-
onomy Aj, A,, ..., Ay defines a different VP.

Practically any known machine learning algorithm are called un-
derlying algorithms. The VP can be considered as environment algo-
rithms rather than simple predictors. Reference [2] indicates that, in
general, a Venn Predictor can be developed in a top layer of any
learning algorithm. In this work the support vector machines algorithm
(SVM) has been used as underlying algorithm and therefore our tax-
onomy is based on SVM [4].

SVM [5] provides a machine learning algorithm for a binary clas-
sification problem. SVM can be extended in an easy way to multi-
classification problems (for example an approach one-versus-the-rest).
The main idea of SVM is that it maps the data into such a feature space
where the classes are linearly separable. The separating hyperplane is
optimal in the sense that it maximizes the distance from the closest data
points belonging to both classes, which are the support vectors. The
optimal hyperplane is usually found by solving a quadratic program-
ming (QP) problem which is usually quite complex, time consuming
and prone to numerical instabilities.

SVM uses supervised learning. This means that the training of a SVM
classifier requires a pre-labelled data-set which is often referred to as a
training set. The nonlinear mapping can be done by using kernels.
Kernels define the measure of similarity and they are essential to SVM.

Fusion Engineering and Design 129 (2018) 130-133

The type of kernel function can thereby be crucial for classification
results. For image data classification, higher order kernels, such as ra-
dial basis functions (RBF) and polynomial kernels, are most widely
used. In this work the RBF kernel has been used.

Next section addresses the parallelization of three methods that
implement SVM. These methods are independent from each other and
the parallelization has been carried out separately, because a combined
solution of three is not possible. These three methods are cascade SVM,
Spread-Kernel SVM and Kernel Adatron SVM.

3. Paralellization

The cascade SVM (cSVM) algorithm [6,7] is a parallelization
concept that optimizes sub-problems independently and iteratively
combines the support vectors. This algorithm formalizes a paralleliza-
tion at the level of training data. Before continuing, the concept of
worker must be introduced. The workers are processes created in the
system for certain tasks and their execution is controlled. Other algo-
rithms distribute the kernel matrix among the workers, but here it is
necessary to divide the input data between the number of available
workers. In such a way, a portion of the training data is assigned to each
worker. The dependence of the different steps of the algorithm makes it
difficult to gain computational speed. For this reason the input set is
divided into smaller sets for building a network where the workers work
collaboratively.

At each level the vectors of the preceding level are combined to
leave only one set of them at the last level. The result of the last level
feeds again the input of the first level. In the first level the workers
receive as input all the support vectors (SV) calculated from the last
level. Convergence for this method is achieved when all the workers of
the first level do not have a support vector to add. In this algorithm the
parallelization of the problem is performed in the distribution of
training data.

The method can be as follows: (1) Partition the data into k disjoint
subsets of equal size; (2) Independently, train a SVM on each of the data
subsets; (3) Combine the SVs output of each pair of SVM which will be
the input to the next SVM level; (4) Repeat steps 2 and 3 until the first
level does not add more SVs.

Spread-Kernel SVM (skSVM) algorithm [8] searches convergence
through parallelizing the working set calculation. To achieve this ob-
jective the kernel matrix must be distributed among all workers that
make up the cluster. There are two ways to load in memory the part of
the kernel matrix that corresponds to each worker. One of them is to
have it loaded in memory and once the parallel session has been started,
make the corresponding distribution. The second way would be to as-
sign the proportional data to each worker and assign the minimum and
maximum indexes of each partition to each worker. To avoid managing
all updates from the frontend worker, each worker sends its data to the
adjacent worker (in a ring structure) until reaching the frontend
worker. With this method there is no waste of time in communications.
This algorithm performs the following steps: (1) Assign upper and lower
indexes; (2) Calculate working-set; (3) Calculate vector alphas; (4)
Update gradient array; (5) Repeat steps 2, 3 and 4 until convergence.

In the kernel-Adatron SVM (kaSVM) the algorithm parallelized is
the one proposed in [9] where it becomes a reformulation of the bias.
The previous algorithms are based on working set calculation to reach
convergence, however the solution of the problem is parallelized dif-
ferently. Here the optimization problem is resolved iteratively where
each worker calculates the solution with its part of the kernel array.
That is, each worker works with a section of the kernel array and sends
its update to the worker manager. The worker manager is responsible for
receiving all the updates and forwarding them back to the rest of
workers. There are three problems associated with this algorithm: the
high management rate that has the main worker, the time spent on
sending data, and finally, the limitations of memory. Unlike the pre-
vious algorithm where it was not necessary to have the kernel array



Download English Version:

https://daneshyari.com/en/article/67/43418

Download Persian Version:

https://daneshyari.com/article/6743418

Daneshyari.com


https://daneshyari.com/en/article/6743418
https://daneshyari.com/article/6743418
https://daneshyari.com

