
Contents lists available at ScienceDirect

Fusion Engineering and Design

journal homepage: www.elsevier.com/locate/fusengdes

MDSplus yesterday, today and tomorrow

T. Frediana,⁎, J. Stillermana, G. Manduchib, A. Rigonib, K. Ericksonc, T. Schröderd

aMassachusetts Institute of Technology, 175 Albany Street, Cambridge, MA, 02139, USA
b Consorzio RFX, Euratom-ENEA Association, Corso Stati Uniti 4, Padova,35127, Italy
c Princeton Plasma Physics Laboratory, Princeton, NJ, 08543, USA
dMax-Planck-Institut für Plasmaphysik, D-17491, Greifswald, Germany

A R T I C L E I N F O

Keywords:
Data acquisition systems
Data management
Data formats
MDSplus

A B S T R A C T

MDSplus is a data acquisition and analysis system used worldwide predominantly in the fusion research com-
munity. Development began 31 years ago by a collaboration of software developers who were charged with
providing a data acquisition system for three new fusion experiments under construction: CMOD at MIT, ZTH at
LANL and RFX at Padova, Italy. The design of MDSplus combined the functionality of MDS (MIT/Model Data
System developed at MIT for the Alcator and Tara fusion experiments) with new features suggested by the
developers from the other laboratories. The development of MDSplus used a RAD (rapid application develop-
ment) approach before RAD became a mainstream methodology. MDSplus was implemented and ready for the
initial operation of CMOD in 1991. Since that time, many other fusion facilities started using MDSplus for data
acquisition and/or for exporting their data to other sites. Today MDSplus is still used around the world for fusion
energy research, space exploration and other fields of science and technology. Work on MDSplus continues to
enhance its capabilities, support more platforms, and improve its reliability. It is anticipated that MDSplus will
continue to provide valuable tools for the fusion energy research community. This paper describes some of the
history of the MDSplus software, the work that is currently underway, and the plans to enable MDSplus to
continue to be available and supported long into the future.

1. Introduction

MDSplus [1,2] is a Framework for data acquisition and management
of scientific data. It consists in a collection of libraries and applications
used for acquisition, access and storage of scientific data. MDSplus
functionality can be summarized as follows:

• Data organization and storage: the MDSplus data access layer de-
fines a variety of data types for scientific applications. Data types
such as scalars and arrays are enriched with derived types such as
signals, to represent both samples and timestamps. Metadata can be
defined, e.g. to associate a description or a validation procedure to a
given data item. Hierarchical collections of data items can be stored
in pulse files, possibly distributed across multiple computers. Pulse
files are created by cloning a template model, called experiment
model, that defines the data structure and contains as subset of data
items, that is, the description of the experiment configuration and
all the information about the experiment that is known in advance.
The cloned pulse file will be enriched with experimental data col-
lected during the experiment sequence. Other data systems, such as

HDF5, provide support for hierarchical data organization for a
variety of data types, but MDSplus provides two unique features: the
use of generic expressions data representation and Multi Reader/
Multi Writer (MRMW) ability. Unlike the other data system where a
data item is an instance of a given data type, in MDSplus every data
item is an expression, that is, a program that returns a given data
type. Expressions can be as simple as the definition of a scalar value,
or be represented by hundreds of lines of code specifying how the
returned data item is built, based on other information, normally
stored in the pulse file itself. Internally. Expressions are stored in
pulse files as the parse tree of the corresponding program (in case of
a simple data, the parse tree becomes the data item itself), and every
time a data item is read in MDSplus, the corresponding expression is
evaluated on the fly. Expressions add an expressive power in data
representation that cannot be provided by other data systems and
they are widely used to describe the whole acquisition chain for
acquired signals and provide a way to dramatically reduce the size
of pulse files by eliminating redundant data. For example, a set of
signals acquired using the same timebase can refer to a single
timebase item in their expression definition instead of storing the

https://doi.org/10.1016/j.fusengdes.2017.12.010
Received 6 June 2017; Received in revised form 30 October 2017; Accepted 11 December 2017

⁎ Corresponding author at: Massachusetts Institute of Technology, 175 Albany Street, Cambridge, MA, 02139, USA.
E-mail address: twf@psfc.mit.edu (T. Fredian).

Fusion Engineering and Design 127 (2018) 106–110

0920-3796/ © 2017 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/09203796
https://www.elsevier.com/locate/fusengdes
https://doi.org/10.1016/j.fusengdes.2017.12.010
https://doi.org/10.1016/j.fusengdes.2017.12.010
mailto:twf@psfc.mit.edu
https://doi.org/10.1016/j.fusengdes.2017.12.010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fusengdes.2017.12.010&domain=pdf


whole time array for every signal.

• MRMW ability is another unique feature of MDSplus. Data systems
supporting structured data typically preserve integrity in data access
by limiting file access to a single writer, and often even multiple
readers are not allowed. This represents a serious limitation in large
data acquisition systems where different actors store data con-
currently in the pulse file. MRMW is provided in MDSplus using a
locking mechanism that is implemented in the lowest data access
layers and is therefore available to all the MDSplus components.

• Access to the data and metadata from a wide variety of program-
ming languages and utilities. MDSplus provides Application
Programming Interfaces (APIs) in a variety of programming lan-
guages including C++, Java, Python and Matlab. The same data
semantics are defined in all APIs, expressed as a set of classes pro-
viding methods that allows all the expressive power of MDSplus to
be exposed to users. Users can access data in a straight way, just
calling the data() method that evaluates the corresponding expres-
sion on the fly, getting the data item they are interested in. More
experienced users can develop their own expressions to efficiently
organize data semantics.

• Remote data access using a variety of transport mechanisms. This is
another unique feature of MDSplus, that is, the possibility of acting
on remote data preserving the same interface as for local data. In
this way the implementation of remote data acquisition systems is
greatly simplified. The developer does not need to worry about data
transport. This is achieved by implementing in the lowest data ac-
cess layers a transport mechanism based on a specific high level
protocol, called mdsip, initially built over TCP/IP and currently
available in a variety of transmission protocol. Remote data access
using mdsip turns out to be much more efficient than using other
protocols for distributed files such as NFS. The reason is that, unlike
general purpose distributed file systems, network traffic in mdsip is
optimized and targeted to the specific MDSplus requirements in
remote data access. This configuration, called Distributed Client, is
enabled by setting a few environment variables that specify whether
data access is local or remote and where data are stored. Another
remote data access configuration supported in MDSplus is called
Thin Client. Applications send expressions to a server for I/O and
evaluation and results are sent back to the client. This optimizes the
number of network transactions for data access and it is best suited
for remote data access in Wide Area Networks where latency in
transaction becomes an issue. Thanks its flexible and efficient re-
mote data access layer, MDSplus is now the standard de facto for
remote data access in fusion experiments.

• Data-driven workflow engine for data acquisition and automated
analysis. Unlike traditional data systems that store configuration
data and acquired signals in separate databases, in MDSplus the
same pulse file stores all the experiment-related information, not
only including configuration and experimental data, but also the
description of the actions carried out during the experiment se-
quence and of the associated scheduling information. The Action
data type specifies what should be executed (a program, a proce-
dure, and I/O routine, etc), when it should be executed (i.e. its re-
lationship with other actions in the sequence) and which actor
should execute this action.

• Integration of user-provided components. MDSplus provides the
device pattern that is a set of classes and rules that allow users in-
tegrate specific data acquisition components. Such components,
normally interacting with specific hardware, can be integrated in
the framework and becomes an integral part of MDSplus. For ex-
ample, they are recognized by the workflow engine and the corre-
sponding actions scheduled during the experimental sequence.

This paper will discuss the history leading to the development of the
MDSplus data system, the current work underway to improve the
quality and functionality of the software and the prospects of MDSplus

continuing to be a useful tool for fusion energy research in the future.

2. The history of MDSplus

2.1. First there was MDS

In 1982, two MDSplus authors, Tom Fredian and Josh Stillerman,
joined the Alcator C fusion experiment team at the Plasma Science and
Fusion Center (PSFC) at the Massachusetts Institute of Technology.
They were tasked with providing computing assistance for engineers
and scientists of the two experiment groups.

The techniques for acquiring and storing data performed by scien-
tists and engineers at the Alcator C experiment were very primitive
compared with today’s standards. The main source of experimental data
was through digitization of 128 signals recorded on a large analog
storage drum using a single CAMAC digitizer to digitize four signals at a
time and write the data to a disk file. In addition to the analog drum a
few other CAMAC digitizers had been used to record measurements. For
this data the scientist responsible for the measurements developed or
copied and modified a specialized program that would read the digi-
tizer and store the data into a disk file in a format only known by the
scientist who wrote the program. The other commonly used mechanism
for storing measurements was the use of a Polaroid instant camera to
take photos of oscilloscope displays which were then often digitized by
hand by scientists.

Based on the previous experience with process control system
software they started developing a data system where the data could be
stored in a central database and the scientists and engineers could use a
common set of tools to record and access experimental data. This new
system was later given the name MDS [3] which originally stood for
Model Data System but was later called MIT Data System.

The MDS data system was developed entirely using the FORTRAN
programming language to be used on the Digital Equipment VMS op-
erating system. Digitized data from CAMAC modules along with time-
stamp information were stored in a datafile and could easily be accessed
using a unique signal name given to each measurement. Software
modules written to read a particular type of CAMAC digitizer were
developed to enable a scientist to configure data acquisition with the
digitizer simply by specifying a few device specific settings, the signal
names to use for the channels being recorded and some timing in-
formation to construct a timebase for the measurements. In addition,
the system provided a simple mechanism to do a linear conversion with
a coefficient and offset to convert digitizer counts into measured vol-
tages. With MDS, all of the scientists and engineers could access all of
the measurements recorded after each pulse of the experiment using the
same software and interactive tools for visualizing the recorded signals.
Some other features of MDS are worth mentioning. The data access
code of MDS supported concurrent multiple data writers and readers.
This allowed new data to be stored by multiple programs simulta-
neously at the same time as previously stored data was being accessed
by users. MDS also provided a lossless compression of the data greatly
reducing the disk storage requirements. The system relied on dynamic
image activation and call by name to provide extensibility, avoiding the
need to recompile/relink the distributed code.

The MDS system developed in less than two years turned into a very
useful tool for the scientists and engineers at MIT and soon many other
fusion research facilities around the world learned of MDS and began
using it on their experiments as well. By 1987 MDS was in use at PPPL,
ORNL, UCLA, SNL, U of Washington, Columbia University and U of
Wisconsin (United States), ANU (Australia), NIFS (Japan), KTH
(Sweden), and NFRI (South Korea).

Much of the acceptance and success of MDS was that it was a col-
lection of tools that could be used by any fusion experiment facility
requiring only site specific configuration setting modifications without
modifying the MDS software.

T. Fredian et al. Fusion Engineering and Design 127 (2018) 106–110

107



Download English Version:

https://daneshyari.com/en/article/6743443

Download Persian Version:

https://daneshyari.com/article/6743443

Daneshyari.com

https://daneshyari.com/en/article/6743443
https://daneshyari.com/article/6743443
https://daneshyari.com

