Fusion Engineering and Design 129 (2018) 179-182

journal homepage: www.elsevier.com/locate/fusengdes =

Contents lists available at ScienceDirect

Fusion Engineering and Design

" Fusion Engineering
d Design

Real-time implementation with FPGA-based DAQ system of a probabilistic = M)

disruption predictor from scratch

Check for
updates

J. Vega™, M. Ruiz”, E. Barrera”, R. Castro”, G.A. Ratta®, S. Dormido-Canto®, A. Murari‘,

E. Bernal®, JET Contributors':

@ Laboratorio Nacional de Fusién, CIEMAT, Avda, Complutense, 40, Madrid, 28040, Spain

® Grupo de Investigacién en Instrumentacién y Actistica Aplicada: Universidad Politécnica de Madrid, Madrid, Spain

€ Departamento de Informdtica y Automdtica, UNED, Madrid, Spain
< Consorzio RFX, Corso Stati Uniti 4, Padova, 35127, Italy

ARTICLE INFO ABSTRACT

Keywords:

Disruption prediction
Real-time

Machine learning
Venn predictors
Data acquisition
Fpga

Real-time (RT) disruption prediction (DP) is essential to trigger mitigation actions that avoid irreversible damage
to the devices. This paper deals with disruption mitigation alarms and performs the RT implementation of a
probabilistic predictor. The RT implementation has been carried out with a fast controller with DAQ FPGA-based
data acquisition devices corresponding to ITER catalogue (in particular, a reconfigurable Input/Output platform
has been used). Up to three input signals have been used and relevant information for the prediction is extracted
from the temporal and the frequency domains. The signals are read from the JET database. Then D/A conver-

sions are carried out and used as inputs to the real time system. In this way, the whole process of digitization,
data analysis and prediction is performed. The computation time for each prediction takes less than 200 ps.

1. Introduction

At present, important efforts to develop physics models for disrup-
tion prediction are being carried out. However, so far, they do not
achieve success rates close to 100%. Instead, data-driven models can be
used. The objective is to build classifiers to distinguish between dis-
ruptive and non-disruptive behaviours. The main drawback for DP is
the need of large training sets to generate reliable classifiers. For ex-
ample, JET APODIS predictor was trained with 7648 non-disruptive
discharges and 521 unintentional disruptions [1]. Of course, ITER or
DEMO cannot wait for such a number of discharges to have reliable
predictions.

This article performs a specific implementation of the probabilistic
predictor from scratch described in [2]. The name predictor from scratch
comes from the fact that the learning process starts with only 1 dis-
ruptive discharge and at least 1 non-disruptive discharge. Its specific
implementation uses an adaptive Venn predictor [3] that requires very
few training examples and shows a high learning rate. The objective of
the paper is not to analyse the predictor results but the real-time re-
quirements to perform predictions in an FPGA-based data acquisition
card.

* Corresponding author.
E-mail address: jesus.vega@ciemat.es (J. Vega).
1 EUROfusion Consortium, JET, Culham Science Centre, Abingdon, OX14 3DB, UK.

Section 2 describes the steps to make Venn predictions, where these
steps are the ones implemented in the FPGA. Section 3 shows the
general architecture of the predictor. Section 4 details the im-
plementation in an FPGA-based system that meets the requirements
established in [4].

2. Venn predictors and a toy example

A general Venn predictor [3] requires a training set {2, ..., 2,,} that
verifies the assumption of independent and identically distributed data.
Each z; is a pair (x;, y;) where x; is a feature vector (whose components
are characteristics of distinctive nature to distinguish between vectors)
and y; € {Yy, ..., Yy} is the label of the class to which x; belongs to. The
objective of a Venn predictor is the estimation of the probability that a
new feature vector x belongs to one class from the possible M classes.

The Venn prediction framework assigns each of the possible clas-
sifications Y; to x and divides all examples {(X3, y1), ..., Xn, ¥n), (X, YD}
into a number of categories by means of a taxonomy function. This
taxonomy function assigns to each pair (x; y;) its category t; from a
finite set of categories.

The Venn predictor implemented here uses the nearest centroid

2 The paper “Overview of the JET results in support to ITER” by X. Litaudon et al. has been published. The reference is: Nuclear Fusion 57 (2017) 102001 (41pp).

https://doi.org/10.1016/j.fusengdes.2018.02.071

Received 11 June 2017; Received in revised form 16 January 2018; Accepted 17 February 2018

Available online 07 March 2018
0920-3796/ © 2018 Published by Elsevier B.V.

http://www.sciencedirect.com/science/journal/09203796
https://www.elsevier.com/locate/fusengdes
https://doi.org/10.1016/j.fusengdes.2018.02.071
https://doi.org/10.1016/j.fusengdes.2018.02.071
mailto:jesus.vega@ciemat.es
https://doi.org/10.1016/j.fusengdes.2018.02.071
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fusengdes.2018.02.071&domain=pdf

J. Vega et al.

X=5.5?
|] 1 |] | . |
| | | | | L L
-1 Classa 1 4 (Classp 6

Fig. 1. Given the training set {(-1, A), (1, A), (4, B), (6, B)}, predict the class and prob-
ability interval of x = 5.5 with the nearest centroid taxonomy.

taxonomy (NCT) [5]. The NCT implies that the category of an element
is equal to the label of the nearest centroid. Other types of taxonomies
to implement Venn predictors can be logistic taxonomies [6] and
taxonomies derived from multi-class SVM classifiers [7]. Reference [8]
describes 5 different types of taxonomies where the underlying Venn
predictors are based on neural networks.

A Venn predictor computes a probability matrix where the row j is
the empirical probability distribution of the labels in a category t that
contains (x, Y):

pi(v) pi(v) pi(w)

p2(Y) p2(Yv) p2(Yw)
pM(Y) p™M(Y;) p™M(Yy)

Py

Once the above matrix has been formed, the Venn prediction pro-
cess assigns as label of x the label of the column with the highest mean
value. The prediction probability is the interval between the minimum
of the winner column and the maximum of such column.

To fix ideas, let’s consider the two-class problem of Fig. 1. It is a one-
dimensional problem and the objective is to classify the point x = 5.5.

1st step: x = 5.5 is assumed to belong to class A.
Centroid(class A) = (-1 + 1 + 5.5)/3 = 1.83.
Centroid(class B) = (4 + 6)/2 = 5.

Table 1 summarizes the possible categories of the elements taking
into account the NCT taxonomy.

Because the point to classify belongs to category 1z, t3 = {(4, B), (6,
B), (5.5, A)}, the first row of matrix Py is P*(A) = 1/3, PA(B) = 2/3.

2nd step: x = 5.5 is assumed to belong to class B.
Centroid(class A) = (-1 + 1)/2 = 0.
Centroid(class B) = (4 + 6 + 5.5)/3 = 5.17.

Table 2 summarizes the category of the elements.
Therefore, the second row of Py is P(A) = 0/3 = 0 and P5(B) = 3/
3 = 1. In this way

By = (1(/)3 2{3]

As the second column has a larger mean value, the Venn predictor
predicts label B for x = 5.5 with a probability interval [2/3, 1].

3. General architecture of the disruption predictor

The high level predictor algorithm is described in Fig. 2. The block
‘operation start’ defines the starting point to collect data to develop the
adaptive predictor. All signals required are stored from that moment

Table 1
categories with the assumption (5.5, A).

Element Nearest centroid Category
(-1, A) (1,83, A) "
1, 4) (1,83, A) A
(4, B) (5, B) B
(6, B) (5, B) B
(5.5, A) (5, B) B

180

Fusion Engineering and Design 129 (2018) 179-182

Table 2
categories with the assumption (5.5, B).

Element Nearest centroid Category
(-1, A) 0, A) A
(1, A) 0, A) A
(4, B) (5.17, B) B
®, B) (5.17, B) 5
(5.5, B) (5.17, B) B
operation start
signal storage
wait for{

one disruptive discharge
one non-disruptive discharge
} end ‘wait for’
firstmodel creation{
compute normalization factors
signal normalization
disruptive example
non-disruptive example
} end ‘first model creation’
wait for discharge {
real-time prediction with last model created
signal storage
if missed alarm{
new model creation {
recompute normalization factors
signal normalization
add disruptive example
add non-disruptive example
} end ‘new model creation’
} end ‘if missed alarm’
} end ‘wait for discharge’

Fig. 2. predictor pseudo-code.

until having one disruptive discharge and at least one non-disruptive
discharge.

In the ‘first model creation’ block, a previous step is to normalise the
signals to avoid a larger weight of quantities with larger absolute values
(for instance, the plasma current in JET is 0(10°) and the locked mode
is O(10~%). Quantities are normalised according to

Q(t) - min(Q)from ‘operationstart’

ma-X(Q)from ‘operationstart’ ™ min(Q)from ‘operationstart’

Quorm (t) =

where max(-) and min(-) are the maximum and minimum values re-
spectively. In this way, the variation range of the signals is [0,1].

At this point, it is important to describe the feature vectors of the
predictor. According to the best results obtained in [2], three signals are
used: plasma current (Ip), locked mode (LM) and internal inductance
(LD). The signals are digitised at 1 ksample/s and are analysed in time
windows 32 ms long. Each feature vector, x, will have 4 components,
two of them in the time domain of the signals and the others in the
frequency domain:

x = (std (|fft (Ip)[}), mean(LM),

std ([fft (LM)[}), mean (LI)) 1)

Download English Version:

https://daneshyari.com/en/article/6743455

Download Persian Version:

https://daneshyari.com/article/6743455

Daneshyari.com

https://daneshyari.com/en/article/6743455
https://daneshyari.com/article/6743455
https://daneshyari.com

