Fusion Engineering and Design 129 (2018) 207-213

Contents lists available at ScienceDirect " Fusion En%insevjng
ign

Fusion Engineering and Design

journal homepage: www.elsevier.com/locate/fusengdes =

J-TEXT distributed data storage and management system )

Check for
updates

W. Zheng™®, Q. Liu™", M. Zhang®"*, K. Wan™", F. Hu™", K. Yu™"

2 State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
® School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

ARTICLE INFO ABSTRACT

As fusion experiment goes to steady state and high-performance data acquisition system been developed, tra-
ditional storage solutions cannot cope with the needs of fusion experiment data storage. Distributed file systems
DAQ such as Lustre are being adopted by more and more facilities. The scaling-out of performance and capacity
Data storage features addressed the main issue of traditional SAN (Storage Area Network) based storage. However, traditional
Distributed storage file system based software solutions are still being used with the distributed file system. They lack modern data
manage functions and limiting the performance of parallel storage. J-TEXT Cloud Database (JCDB) is a software
stack that uses distributed database to provide fusion experiment data storage and management services. It ships
with a storage engine powered by Cassandra database. This storage engine is designed for fusion experiment data
and provides great performance. Data is divided into chunks when written and stored in a specially designed
distributed database across the cluster. It has a MongoDB powered metadata management system which works
seamlessly with the storage engine. JCDB is fully modular, handling different data type and metadata man-
agement functions are integrated as plugins. Even the storage engine can be changed. Though J-TEXT not
supports long pulse experiments, the design of JCDB is aiming to meet long pulse discharge requirements, bring
distributed database technology for future fusion devices such as China fusion engineering test reactor (CFETR).
JCDB has the benefit of distributed file systems, provides complex metadata manage functions and comes with

Keywords:
Tokamak

great performance.

1. Introduction

As more and more advanced diagnostic system and data acquisition
system adopted by fusion experiment, as well as the experiment pulse
gets longer, the fusion experimental data storage face a challenge. The
fact that data produced by one shot grow tenfold in 5 years has been
shown by multiple fusion facilities [1]. ITER is expected to generate
quite large experimental data, up to 50GB/s, at peak times [2,3]. These
issues not only challenge the performance and capability of future
storage systems, but also the scalability.

Recently, there are researches in the application of distributed file
system such as Lustre and GlusterFS in fusion experiment data storage
[4-7]. The distributed file systems come with great performance and
scalability, and they are compatible with POSIX (Portable Operating
System Interface of UNIX) file system API (Application Programming
Interface) [8]. This means the applications based on MDSplus and HDF5
can seamlessly migrate onto these types of storage [9,10]. The experi-
ment data analysis tooling and workflow are well established on
MDSplus and HDF5, which are very popular among fusion community
[3,11]. But MDSplus and HDF5 are not designed for distributed file

systems, they are optimized for block devices like hard drives or RAIDs
(Redundant Arrays of Independent Disks). Distributed file systems are
often based on a cluster with nodes connected via Ethernet, which
differs a lot with RAID. MDSplus and HDF5 based applications cannot
unleash the full power of distributed file systems without any opti-
mizing. Moreover, implementing POSIX file system API on object sto-
rage based distributed storages will bring in overhead and little benefit
for weakly structured data like fusion experiment data [12]. LHD once
came up with a technology called IznaStor which is not a POSIX com-
patible storage solution for fusion experiment data. It stores data in a
key-value pair cluster database. It shows many advantages over tradi-
tional file based solutions [1]. But it’s kind of buggy and was dropped
years ago.

Various kinds of diagnostics will generate different types of data.
They are diverse in structure and metadata. Managing and accessing
this huge amount of complex data efficiently is also a requirement for
future storage system [13]. Relational database management systems
(RDBMS) such as MySQL and PostgreSQL have its limitation to cope
with these unstructured data [14,15]. It will be more difficult to change
or update the schema. If some properties are used only a few times, but

* Corresponding author at: State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.

E-mail address: zhangming@hust.edu.cn (M. Zhang).

https://doi.org/10.1016/j.fusengdes.2018.02.058

Received 9 June 2017; Received in revised form 1 February 2018; Accepted 16 February 2018

Available online 07 March 2018
0920-3796/ © 2018 Published by Elsevier B.V.


http://www.sciencedirect.com/science/journal/09203796
https://www.elsevier.com/locate/fusengdes
https://doi.org/10.1016/j.fusengdes.2018.02.058
https://doi.org/10.1016/j.fusengdes.2018.02.058
mailto:zhangming@hust.edu.cn
https://doi.org/10.1016/j.fusengdes.2018.02.058
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fusengdes.2018.02.058&domain=pdf

W. Zheng et al.

all records must contain the properties, leading to serious waste on disk
space. In addition, MDSplus has limited metadata management function
and HDF?5 is just a file format that requires the metadata management
and data access function to be developed from scratch. There are ways
to search data by using information embedded in the scientific data,
which is very useful if the information searched is hard to be stored in
metadata [16]. However, it requires large amounts of computing power
and it cannot replace the metadata managing function.

Attempting to address the above requirements, we designed a sto-
rage solution called J-TEXT cloud database (JCDB). It is a set of soft-
ware that use NoSQL (Not only Structured Query Language) database to
achieve management and storage of complex and large fusion experi-
ment data efficiently [17]. It is a very flexible framework that can be
expanded to work in many other scientific experiments. In the fol-
lowing sections the structure of JCDB and the implementation of some
essential components will be presented, as well a performance test
under 4 nodes JCDB cluster. Performance comparison to a GlusterFS
distributed file system on the same hardware is also presented.

2. J-TEXT cloud database structure

Looking at the name of J-TEXT cloud database, one may get a few
clues of what it is. J-TEXT [18] is the tokamak facility on which it is
developed. Cloud database means data is stored in a cloud of compu-
ters, forming a NoSQL database cluster. JCDB is a set of software uti-
lizing a computer cluster to provide experiment data management,
storage and access services.

The block diagram of JCDB is shown in Fig. 1. JCDB core service is
in charge of managing and accessing all the data stored in JCDB storage
infrastructure, and other components are built around it. It implements
metadata storage via storing the metadata as entities in the MongoDB
[19]. The metadata for each experiment signal are organized in a
hierarchical structure. Note that, MongoDB database only keeps the
metadata, not the actual scientific data. The scientific data are stored in
scientific data storage infrastructure by JCDB storage engines. The
storage engine is controlled by the JCDB core service. The core service
only defines an interface for the storage engine but has no concrete
implementations, so user can implement their own different storage
engine and inject into the core service. The core service also provides
basic functions to manipulate and query the metadata. JCDB API is
designed to integrate all essential parts of JCDB. It will create and
manage JCDB core service instance and storage engine instances when

Researchers (visulazion and analysis)
1
1L

JCDB Web (RESTful API+UI)

DAQ Device
Onsite <. JCDB API Plug-ins
Analysis
Program : .
JCDB Core Service
| Storage Engine Interface JCDB
— 7
Storage Engine Software
3 = Stack
N Storage Infrastructure :‘\,}

Scientific Data
Storage

Metadata Storage
(MongoDB)

Fig. 1. The block diagram of JCDB software stack.

208

Fusion Engineering and Design 129 (2018) 207-213

users try to work with JCDB. A few plugin interfaces are defined by
JCDB API to provide data type support and metadata query support.
JCDB API is also in charge of discovering, managing all the plugins and
invoking the right one depending on the users’ requests. The lowest
level of Fig. 1 is the storage infrastructure for JCDB. There must be a
MongoDB instance for the core service to keep all the structured me-
tadata, but the storage infrastructure for actual scientific data depends
on the implementation of storage engine. It can be a database or file
system on a RAID. Storage engine normally stores the scientific data
with a foreign key, pointing to its metadata objects for efficient writing
and retrieval. The JCDB API is for the devices that require high per-
formance such as acquisition devices and on-site data analysis pro-
grams. They can access to the JCDB storage infrastructure directly with
IP address and port as long as they are authorized. The top level of
Fig. 1 is called JCDB web, which is a web service running upon JCDB
APL It provides a HTTP (HyperText Transfer Protocol) RESTful (Re-
presentational State Transfer) API and a few web base GUI (Graphical
User Interface) for users that have no environment condition or per-
mission to the JCDB storage infrastructure, which means they must use
JCDB web instead of JCDB APIL

The inversion of control pattern is used in designing the JCDB fra-
mework. The storage engine interface is defined in the core service, and
the interface for various plugins are defined in JCDB API. This allow
user to customize JCDB for different applications easily.

3. Data management and access in JCDB

Managing large sets of experiment metadata, searching and filtering
the wanted signals are always demanding jobs. JCDB provides a flexible
solution by using MongoDB to keep all the metadata.

3.1. Data model and management in JCDB

As mentioned above, JCDB split the experiment data into 2 parts,
the metadata and the actual scientific data, as shown in the UML
(Unified Modeling Language) in Fig. 2. There are 4 fundamental con-
cepts of JCDB data model: experiment, signal, payload and sample.
Experiment and signals are derived from entity object and they are
defined and managed by JCDB core service. A signal is an entity that
holds the metadata of a self-contained experiment data. For example,
the plasma current waveform sampled in one shot is a self-contained
experiment data, which means a set of data that include all information.
That is to say, users can obtain all data they want without searching
related information in other signal. An experiment can contain meta-
data of a set of related experiment and signal data. It should be noted
that the signal does not hold any actual scientific data. JCDB core
service provide basic operations to create, read, update and delete the
experiments and signals. Furthermore, it stores all entities in a Mon-
goDB collection and exposes a query interface, allowing user to build
very powerful and complex queries to search experiments and signals
with their metadata. The core service only defines the generic signal
and experiment classes. With inheritance, users can implement their
own types.

Unlike the metadata, the scientific data is unstructured. These data
are stored by JCDB storage engine in unstructured way to reduce the
overhead of structured data storages. The basic element or scientific
data stored in JCDB is called a sample. A sample is just a value of
certain type like a float number or an image. It often represents a value
produced by a DAQ device on one sampling actions. It is the smallest
data element in JCDB. Storage engine can fetch or write single or
multiple samples, but it cannot fetch or write half a sample. Sample
type can be specified on creating the signal. A set of samples is grouped
together to form a payload, which is designed to improve the efficiency
of a storage engine. Besides samples, a payload also carries some data
about how sample are arranged, and most importantly, which signal
does this payload belongs to. The signal entity and all the payloads



Download English Version:

https://daneshyari.com/en/article/67/43487

Download Persian Version:

https://daneshyari.com/article/6743487

Daneshyari.com


https://daneshyari.com/en/article/6743487
https://daneshyari.com/article/6743487
https://daneshyari.com

