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Method for automatic detection of L-H transition using Support Vector Machine (SVM), a popular tool of su-
pervised machine learning tools, has been evaluated in order to improve plasma density control in KSTAR.
Through the SVM, a nonlinear classifier is trained to distinguish L-mode and H-mode using two kinds of diag-
nostic data measured in KSTAR. The trained classifier has been analyzed for possible usage on the real-time
detection through the truncation of the training samples. Study on the optimization of the training samples, and

corresponding accuracy change is made for evaluating feasibility for real-time implementations.

1. Introduction

In many tokamaks including KSTAR [1], a high confinement mode
(H-mode) [2,3] operation is highly desired for more efficient fusion
plant design. The H-mode plasma has higher density pedestal than a
low confinement mode(L-mode) on the plasma edge hence it shows
better performances than the L-mode. It is widely known that the
density control efficiency is very different for H-mode plasmas, mainly
due to the change of fueling efficiency related to the edge transport
barrier at the H-mode. Therefore, it is generally recommended to use
different fueling devices, different diagnostics and even different algo-
rithms. In order to apply different algorithm for L- and H-mode
plasmas, it is required to determine whether the plasma is in the L-
mode or H-mode and choose the appropriate control scheme according
to the state of the plasma.

In this work, we did a feasibility study on automatic detection of the
L-H transition event during a KSTAR plasma pulse by utilizing the
method of Support Vector Machine (SVM) [4]. As seen from previous
studies [5-7] using SVM, classifier using the SVM shows high classifi-
cation performance. Method of data selections, performance check and
optimizations for the real-time applications are described. In order to
classify the L-H transition properly in real-time, we aim to obtain a
detection probability above 80%. From L-H transition to the first ELM
burst, it takes several tens of milliseconds to a few hundred milli-
seconds. Therefore, the faster the calculation time for classification, the
more detections our classifier can have. Considering a classifier within
10-20 ms computational cycle and above 80% accuracy, we can have
enough detection opportunities after the L-H transition and then we can
classify whether plasma is L- or H-mode before first ELM burst.

Accuracy and performances on the models consisting a single fea-
ture and double features are evaluated. Finally, an appropriate candi-
date of the model constructed using an optimized set of samples is
suggested as a result.

2. Method

The SVM is one of the tools of supervised machine learning, which is
a classifier that has the advantage of having no local minimum problem
because it learns by minimizing a convex function. In this chapter, we
describe the characteristics of the features (=data we use for training),
preparation of training set, and choice of Kernel functions done for this
study.

2.1. Feature selection

We need data to get the classifier we want through the SVM. In
machine learning, data is typically called features and these features are
used to find a hyperplane that can distinguish the classes. Therefore,
feature selection is an important step for making a classifier using SVM.
Features are chosen from known plasma diagnostics which indicate the
occurrence of L-H transition, such as D, signal drop, increase of line
integrated electron density 7z, as well as electron and ion temperature
[8]. In addition, the features should satisfy the requirement that they
are available for real-time use. That is because the goal of our research
is to help improve real-time density control efficiency in plasma op-
eration.

In this work, the SVM classifier is trained with as few as possible
features because its final goal is real-time calculation which requires
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Fig. 1. (top) Amplitude change and drop timing of D, signal in typical
KSTAR discharges and (bottom) increase of standardized line-averaged
density at the moment of the L-H transition in KSTAR plasmas. The Dyo
and Tgp are the mean values of each measurement and the o is the stan-
dard deviation of the D, and fig.
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fast computation speed. As the number of features increases, the
number of support vectors, which is the closest vectors to the classifier
[4], increases hence the amount of calculation increases. In the SVM
classifier, the number of support vectors affects calculation speed be-
cause the whole matrix of the support vectors should be computed for
single test data. Therefore, the proper number of features should be
selected to guarantee the accuracy of predictions above a certain level.

The D, signal, shown in the top of Fig. 1, is the most important
feature since its characteristic intensity drop pattern indicates the edge
temperature increases due to improved confinement as edge turbulence
is suppressed. [8]. Since the height of the signal drop is not constant,
and varies shot by shot, this D, signal feature cannot be classified by a
simple linear classifier. The characteristic time scale of the D, drop at
the L-H transition is usually about 2-4 milliseconds in KSTAR, and
usually it is accompanied by repeating burst events called as Edge Lo-
calized Mode(ELM) [9] within several hundred milliseconds. In order to
detect the L-H transition and to properly start operating an algorithm
for density control, it is desired that the computational time is faster
than the time scale of dropping the D, signal. This is another reason
why we consider the SVM for the classifier: Considering the time until
the first Edge Localized Mode (ELM) burst occurs after the L-H transi-
tion, the classifier should give the status (L or H) within 150-300
milliseconds so that the corresponding controller could respond to the
status change.

Another feature under consideration is the line-averaged electron
density measurement 7, by millimeter wave interferometer(MMWTI)
[10]. As shown in the bottom of Fig. 1, the increase of the electron
density is big enough to distinguish the H-mode from the L-mode due to
the edge pedestal formation and improved particle confinement. Other
features, such as pressure or electron temperature, did not have enough
distinctive temporal profile that can train the SVM.

As shown in Fig. 1, there is a change that can distinguish H-mode
from L-mode after the L-H transition occurs in both features. The D
drop occurs in a relatively short time interval whereas the density signal
increases more slowly, although the beginning of the changes occurs
almost at the same time within the available time resolution (10
kSamples/s).

2.2. Preparation of data set

Once the features are selected, the preparation of training/testing
data set is done as the next step. Our area of interest is = 100 ms around
the moment when the L-H transition is seen. We extracted 2001 sam-
ples/shot from the 10KHz-sampled D, measurement. Since the
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sampling rate of the line integrated electron density f; is originally
100KHz, the density measurement has been downsampled to the same
sampling (10KHz) as the D, signal.

Since the quality of the diagnostics can vary shot to shot, we pre-
pared separate data sets for a single feature model and a two-features
model. The single feature model uses only the D, signal. 200 in-
dependent shots are prepared for this model, and 70% of the data set
are used for training and 30% of the data set are used for testing the
trained model. In other words, 140 shots are used as training set and 60
shots as test set.

In the model with two features using both the D, signal and line-
averaged electron density 7, the total number of prepared shots is 197.
Since the number of samples obtained from one shot is 2001, 394,197
samples were provided from those 197 shots. In these samples, 278,319
samples from 139 shots were used as training set and 116,058 samples
from the remaining 58 shots were used as test set.

2.3. Non-linear classifier, Kernel function, and formula for the real-time
detection

The classification of the data should be done by a non-linear clas-
sifier. As shown in Fig. 2, the two-scattered data cannot be separated by
a linear classifier.

The form of a classifier is as the following:

dx) = Z Vi K (X, x) + b

XKEY

where xj support vectors, oy Lagrange multiplier, y; the label of sup-
port vectors, b bias and K (xi, x) the Kernel function that has to be
figured out for the accuracy of separation.

In order to find a suitable kernel function for our non-linear SVM
classifier, we evaluated our model through 5-fold cross-validation,
which is one of the cross-validation techniques in machine learning. In
the 5-fold cross-validation, the original training set is randomly divided
into 5 subsets. Of the 5 subsets, one subset is used for test data and the
remaining 4 subsets are used for training data. The validation process is
repeated 5 times, changing the subsets. The error of the cross-validation
is obtained by averaging the results of 5 times. The advantages of this
technique are that the correlation between the original training data is
less affected since the training data is randomly partitioned and the
calculation speed of cross-validation is fast.

Through the 5-fold cross-validation, we have validated the kernel
function K with quadratic, cubic, and radial basis function (RBF) in the
form
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