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a  b  s  t  r  a  c  t

Changing  experimental  thermogravimetric  conditions,  such  as  heating  rate  and  sample  mass,  may  not
be sufficient  to eliminate  the  effect  of  interactions  in  pharmaceutical  analysis.  This  motivates  the  inves-
tigation  of  a  chemometric  approach  to  determine  active  drugs  in  pharmaceutical  formulations.  The
use of multiple  linear  regression  (MLR)  with  temperatures  selected  by  the  successive  projections  algo-
rithm  (SPA)  for  determination  of  l-ascorbic  acid  (AA)  in simulated  non-effervescent  formulations  using
microcrystalline  cellulose  as  excipient  is  evaluated.  For  comparison,  two  other  multivariate  calibration
methods,  MLR  with  temperatures  selected  by  genetic  algorithm  (GA) and  partial  least  squares  (PLS)  using
the  entire  range  of  temperatures  were  chosen.  MLR–SPA  provided  the  best  predictions,  in agreement  with
the expected  AA concentration  (correlation  of  0.991  and root-mean-square  error  of  0.8%,  m/m  in the  range
61.3–74.9%,  m/m).  No  significant  differences  were  found  between  the  MLR–SPA  values  and  those  from
iodimetric  titration,  according  to t-test  at  95% confidence  level.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Thermogravimetric (TG) curves present an essentially quanti-
tative character which can be exploited for the determination of
components in several kinds of samples provided that a change
in mass occurs [1].  The main advantages of using TG data for
the analysis of pharmaceutical formulations are the possibility of
simultaneous determination of more than one component in the
sample and the reduction in the volume of solvents and waste when
compared to chromatographic procedures.

Despite the essentially quantitative character of thermo-
gravimetry, its application for the determination of components
present in pharmaceutical formulations may  be hampered by
physical–chemical interactions between components.
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Radecki and Wesolowski [2,3] first investigated the interac-
tions of different components of pharmaceutical formulations on
the decomposition of pure pharmaceuticals and concluded that TG
curves can be used for qualitative identification and quantifica-
tion of the analyte. They also suggested that the thermal processes
that allow these determinations are dehydration, decarboxylation
and weight losses relative to the reaction of effervescent compo-
nent mixtures, decomposition and formation of intermediates, or
physical events of a component in the pharmaceutical formulation.

However interactions between the components of a sample can
lead to an overlay of thermal events that cannot be distinguished by
changing the experimental parameters such as heating rate, sample
mass, nature and flow of the purge gas, etc. Such interactions are the
result of chemical and/or physical processes that arise when drugs
and excipients are mixed together, and are frequently observed in
thermal analysis of pharmaceutical formulations [4].  Under these
circumstances, the quantitative determination of the compounds
involved in these thermal events cannot be achieved with the preci-
sion expected from a thermogravimetric measurement. Therefore,
despite the number of investigations concerning the determination
of pharmaceuticals by thermal methods [5–10], the interactions
described above are still a limiting factor for many applications.
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Within this context, the use of chemometrics may  be an inter-
esting alternative for the treatment of TG data when the direct
determination of the desired component is not possible due to
interactions between the components of the formulation [11]. In
the present work, a chemometric approach is proposed to improve
the analysis of the drug in a mixture where interactions and over-
lapping thermal events occur.

For this purpose, multiple linear regression (MLR) is employed
to obtain a multivariate calibration model with temperatures
selected by the successive projections algorithm (SPA). SPA is
a variable selection algorithm specifically designed to remove
collinearity from the data set to improve numerical conditioning
and reduce noise propagation in MLR  models [12,13]. SPA has been
successfully employed in several chemometric problems includ-
ing: wavelength selection in ICP-OES [12], UV–vis [13], FTIR [14]
and NIR spectrometry, as well as potential selection in voltammetry
[15] and molecular descriptors in QSAR/QSPR studies [16].

SPA can be regarded as a forward selection method, in which
the number of variables in the model is progressively increased
from one up to a maximum value established by the analyst. In
MLR  with mean-centered data, the maximum number of variables
cannot exceed the number of calibration samples minus one [17].
In SPA, each variable to be included in the model is chosen in order
to display the least collinearity with respect to the previous ones.
The initial variable and the overall number of variables are opti-
mized in order to maximize the agreement between the MLR  model
predictions and the expected values over a given validation set [13].

The proposed approach was applied to the determination of l-
ascorbic acid (AA) in ternary systems water/AA/microcrystalline
cellulose (MC). Such TG determination is a challenging task in view
of interactions and overlapping thermal events which are known
to occur [8].  The performance of the MLR–SPA model is evalu-
ated in terms of the prediction error with respect to the expected
AA concentration values. For comparison, two other multivariate
calibration techniques are also employed, namely MLR  with tem-
peratures selected by a genetic algorithm (GA) [18,19] and partial
least squares (PLS) using the entire range of temperatures in the TG
curve.

In order to assess the potential of the proposed approach as an
alternative to classical methods for AA analysis, the MLR–SPA pre-
dictions are also compared with those obtained with the official
iodimetric method [20], which is recommended in the Brazilian
Pharmacopoea [21].

2. Experimental

2.1. Experimental design

The calibration mixtures were designed according to the XVERT
algorithm [22] with the following ranges (%, m/m)  for the com-
ponent concentrations: water: 0.5–4.5; microcrystalline cellulose
(MC): 19.5–42.5; l-ascorbic acid (AA): 55.0–79.5. These ranges
were chosen to encompass the expected composition of typical
commercial formulations. A two-level, three-component, mixture
design including a central point yielded five calibration mixtures.

A set of four validation mixtures was designed for use in the
temperature selection algorithms (MLR–GA and MLR–SPA) and in
the determination of the number of factors in PLS. The compo-
sition of such mixtures was established by taking intermediate
points between the extreme vertices and the central point of the
XVERT design. Finally, four prediction mixtures were specified with
random concentration values inside the calibration range. These
mixtures were used to compare the models with respect to their
predictive ability. For this reason, they were not employed in any
stage of the model-building process.

Table 1
Composition of the calibration (C1–C5), validation (V1–V4), and prediction (P1–P4)
mixtures (%, m/m).

Water MC AA

C1 0.5 42.5 57.0
C2 4.5  19.5 76.0
C3  0.5 20.0 79.5
C4  4.5 40.5 55
C5  2.5 31.0 66.5
V1  1.5 25.0 73.5
V2 1.5  37.0 61.5
V3 3.5  25.0 71.5
V4  3.5 37.0 59.5
P1  1.2 31.3 67.5
P2  3.9 24.8 71.3
P3  3.0 35.7 61.3
P4 1.0  24.1 74.9

Table 1 presents the composition of the calibration, validation,
and prediction mixtures. These mixtures were prepared by weigh-
ing the desired amount of each component with a precision of
0.1 mg  and homogenizing in a mortar for at least 10 min. The mix-
tures were kept in sealed vials.

2.2. Iodimetric titration

A 1.50 × 10−2 mol  L−1 iodide solution was prepared by disso-
lution of I2 and potassium iodide in water and standardized with
sodium thiosulfate. The l-ascorbic acid titrations were performed
using 0.1000 g of each prediction mixture dissolved in 100.0 mL of
de-ionized water in the presence of the starch indicator [20].

2.3. Thermal measurements

The TG curves were recorded using a TGA-2950 thermogravi-
metric module coupled to a TA-2000 thermal analyzer, both
from TA-Instruments. Samples of about 10 mg (±1 �g) of each
mixture were placed in an open alumina crucible and heated
at 10.0 ◦C min−1 under a dynamic oxygen atmosphere (gas flow
100 ml  min−1) at atmospheric pressure.

2.4. Data pre-processing

The TG curves were smoothed by taking the average value of the
mass measurements within each 1 ◦C temperature interval from
32 ◦C to 590 ◦C. Measurements were normalized by the initial mass
value of each curve. The resulting dimensions of the TG data matri-
ces (X) were 5 × 558 (calibration), 4 × 558 (validation), and 5 × 558
(prediction).

Each column of the X (TG data) and Y (concentration data) matri-
ces was centered on the mean of the calibration set prior to the
modelling procedures.

2.5. Modelling procedures for AA determination

The number of selected temperatures for MLR modelling was
allowed to vary between one and four. This upper limit is given by
the number of calibration mixtures (five) minus one (because one
degree of freedom is lost due to the mean-centering operation) [17].

Both SPA and GA were implemented to minimize the root-
mean-square error obtained by applying the resulting MLR  model
to the validation set (RMSEV) [17]. The optimization process in
SPA is restricted to subsets of variables with small collinearity, as
described elsewhere [13]. The GA employed standard binary chro-
mosomes with length equal to the number of temperatures in the
TG curve (a “1” gene indicates a selected temperature) [18,19].
One-point crossover and mutation operators were employed with
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