

Fusion Engineering and Design

journal homepage: www.elsevier.com/locate/fusengdes

Review of correlations for subcooled flow boiling heat transfer and assessment of their applicability to water

Xiande Fang*, Yuliang Yuan, Anyi Xu, Lu Tian, Qi Wu

Institute of Air Conditioning and Refrigeration, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing 210016, China

A R T I C L E I N F O

Keywords: Subcooled Flow boiling Heat transfer coefficient Correlation Water

ABSTRACT

The subcooled flow boiling heat transfer of water has many applications, such as cooling devices of nuclear power systems and electronics, and the applicability of correlations of subcooled flow boiling heat transfer to water needs to be assessed. A number of correlations for subcooled flow boiling heat transfer were proposed. However, their prediction accuracy for water was not systematically investigated. This paper presents a comprehensive review of correlations of subcooled flow boiling heat transfer. A large database of subcooled flow boiling heat transfer of water containing 1184 data points is compiled from 14 published articles, based on which 21 correlations of subcooled flow boiling heat transfer are assessed, and their prediction accuracy is analyzed for different channel sizes, channel shapes, and flow directions. The results are helpful for understanding the prediction methods of subcooled flow boiling heat transfer and choosing a proper correlation for a given application.

1. Introduction

Subcooled flow boiling heat transfer of water in channels is widely used in plasma facing components of fusion nuclear systems, thermal power plants, as well as electronic cooling systems [1–5]. The calculation of subcooled flow boiling heat transfer of water is important for designing such facilities. A number of correlations for subcooled flow boiling heat transfer were proposed, of which some are also employed for more sophisticated geometries, such as hypervapotron [6] and swirl tubes [7].

There are a variety of factors that affect subcooled flow boiling heat transfer, such as fluid, mass flux, heat flux, subcooling, pressure, and channel geometry, which makes it a challenge to predict subcooled flow boiling heat transfer. In the past 70 years, many investigations were conducted to determine subcooled flow boiling heat transfer. Due to the complexity of this issue, the experimental study has been the main research approach, and models for calculating subcooled flow boiling heat transfer are mostly experiment-based correlations, among which most were based on experimental data with water.

Such intensive investigations have led to a better understanding of subcooled flow boiling heat transfer characteristics and mechanisms. Meanwhile, over 20 correlations of subcooled flow boiling heat transfer have been proposed [2,3,5,8–26]. A large number of correlations provide the engineers and designers more choices in engineering practice. On the other hand, they are confronted with considerable confusion in

choosing a suitable correlation for a given application since it is hard for them to know which correlation may yield a better calculation result.

Neither the systematic review on the correlations of subcooled flow boiling heat transfer nor the assessment of their applicability to water with a multiple-source database has been found. The goal of the present work is to review the correlations of subcooled flow boiling heat transfer and to evaluate their applicability to water based on a large experimental database compiled from 14 published articles, which contains 1184 data points of subcooled flow boiling heat transfer of water in various channel sizes and both vertical and horizontal flow directions over a wide range of parameters. Twenty-two existing correlations of subcooled flow boiling heat transfer are reviewed, among which 21 are assessed and analyzed using the database. The results provide a strong support for understanding prediction methods of subcooled flow boiling heat transfer and choosing a proper correlation for a given application.

2. Overview of correlations for subcooled flow boiling heat transfer

This section presents a systematic review of correlations for subcooled flow boiling heat transfer. These correlations can be classified into five categories: enhancement-factor, superposition, asymptotic, $q \sim \Delta T_{sat}^n$, and flow pattern based types. The wall superheat ΔT_{sat} is

http://dx.doi.org/10.1016/j.fusengdes.2017.09.008

^{*} Corresponding author. *E-mail address:* xd_fang@yahoo.com (X. Fang).

Received 4 December 2016; Received in revised form 19 June 2017; Accepted 11 September 2017 Available online 19 September 2017 0920-3796/ © 2017 Elsevier B.V. All rights reserved.

Nomenclature		X_{tt}	Martinelli parameter for turbulent liquid/turbulent gas	
		Greek symbols		
Во	Boiling number	β	Volumetric thermal expansion coefficient (1/K)	
c_p	Specific heat at constant pressure (J/kg K)	λ	Thermal conductivity (W/m K)	
Ď	Diameter, hydraulic diameter (m)	μ	Dynamic viscosity (kg/s m)	
F	Reynolds number factor	ρ	Density (kg/m ³)	
Fr	Froude number	σ	Surface tension (N/m)	
f	Moody friction factor	Ψ	Enhancement factor	
G	Mass flux (kg/m ² s)			
H	Channel height (m)	Subscript	Subscripts	
h	Heat transfer coefficient (W/m ² K)			
h_{lg}	Latent heat of vaporization (J/kg)	b	Bulk temperature	
Ja	Jacob number	ср	Constant property	
Ja^*	Modified Jacob number	crit	Critical point	
L	Channel length (m)	сv	Convection	
Μ	Molecular mass (kg/kmol)	exp	Experimental	
Nu	Nusselt number	f	Film	
р	Pressure (Pa)	fc	Forced convection	
P_R	Reduced pressure, $P_R = p/p_{crit}$	g	Gas phase	
Pr	Prandtl number	in	Inlet	
q	Heat flux from channel wall to fluid (W/m^2)	1	Liquid phase	
Re	Reynolds number	lo	Liquid only, assuming all fluid as liquid	
S	Suppression factor	loc	Local	
Т	Temperature (K)	nb	Nucleate boiling	
ΔT_{sat}	Wall superheat (K)	пс	Natural convection	
$\Delta T_{sat.ONB}$	Wall superheat at onset of nucleate boiling (K)	pred	Predicted	
ΔT_{sub}	Subcooling (K)	sat	Saturated	
u	Velocity (m/s)	sp	Single-phase	
W	Channel width (m)	tр	Two-phase	
We [*]	Modified Weber number	w	Channel inner wall surface	

defined as the difference between the inner wall temperature T_w and the saturated temperature T_{sab}

$$\Delta T_{sat} = T_w - T_{sat} \tag{1}$$

2.1. Enhancement-factor models

.

For enhancement-factor models, the subcooled flow boiling heat transfer coefficient h_{tp} may be reduced to

$$h_{tp} = \psi h_{sp,l} \tag{2}$$

where ψ is the enhancement factor, which accounts for the enhancement of the boiling to the subcooled flow boiling heat transfer, and $h_{sp,l}$ is the forced convection heat transfer coefficient of the single-phase liquid and can be generalized as

$$h_{sp,l} = CRe_l^m Pr_l^n \frac{\lambda_l}{D} \tag{3}$$

where constants C, m and n need to be determined by curve fitting of experimental data. Substituting Eq. (3) into Eq. (2) yields

$$h_{tp} = Y R e_l^m P r_l^n \frac{\lambda_l}{D}$$
⁽⁴⁾

or

$$Nu_{lp} = h_{lp} \frac{D}{\lambda_l} = YRe_l^m Pr_l^n \tag{5}$$

where *Y* is a fluid and flow condition dependent function, which can be determined through curve fitting of experimental data. The liquid Prandtl number Pr_l and the liquid Reynolds number Re_l are defined as

$$P\eta = \frac{c_{pl}\mu_l}{\lambda_l} \tag{6}$$

$$Re_l = \frac{G_l D}{\mu_l} \tag{7}$$

where G_l is the liquid mass flux.

Since the vapor mass flux is far smaller than the liquid mass flux in subcooled flow boiling, it is reasonable to simplify the calculation by substituting G for G_b where G is the total mass flux of the two-phase flow. Thus,

Table 1

Values of the constant C_{sf} in the Rohsenow correlation (from Ghiaasiaan [28]).

Fluid-surface combination	C _{sf}	Fluid-surface combination	C_{sf}
Water-nickel	0.006	Benzene-chromium	0.01
Water-platinum	0.013	n-Pentane-chromium	0.015
Water-emery polished copper	0.0128	<i>n</i> -Pentane–emery polished copper	0.0154
Water-brass	0.006	<i>n</i> -Pentane–emery polished nickel	0.0127
Water-ground and polished stainless steel	0.008	Ethyl alcohol-chromium	0.0027
Water-Teflon pitted stainless steel	0.0058	Isopropyl alcohol-copper	0.0025
Water-chemically etched stainless steel	0.0133	35% K2CO ₃ -copper	0.0054
Water-mechanically polished stainless steel	0.0132	50% K2CO ₃ -copper	0.0027
Water-emery polished, paraffin treated copper	0.0147	<i>n</i> -Butyl alcohol–copper	0.0030
CCl ₄ -emery polished copper	0.007		

Download English Version:

https://daneshyari.com/en/article/6744578

Download Persian Version:

https://daneshyari.com/article/6744578

Daneshyari.com