
Please cite this article in press as: T.W. Fredian, et al., MDSplus quality improvement project, Fusion Eng. Des. (2016),
http://dx.doi.org/10.1016/j.fusengdes.2016.05.034

ARTICLE IN PRESSG Model
FUSION-8777; No. of Pages 4

Fusion Engineering and Design xxx (2016) xxx–xxx

Contents lists available at ScienceDirect

Fusion Engineering and Design

jo ur nal home p age: www.elsev ier .com/ locate / fusengdes

MDSplus quality improvement project

Thomas W. Fredian a,∗, Joshua Stillerman a, Gabriele Manduchi b, Andrea Rigoni b,
Keith Erickson c

a Massachusetts Institute of Technology, 175 Albany Street, Cambridge, MA 02139, USA
b Consorzio RFX, Euratom-ENEA Association, Corso Stati Uniti 4, Padova 35127, Italy
c Princeton Plasma Physics Laboratory, Princeton, NJ 08543, USA

h i g h l i g h t s

• Project to improve the quality of the MDSplus software package.
• Use of modern software technology, compiler options, automake.
• Refactoring of older code.
• Use of testing tools.

a r t i c l e i n f o

Article history:
Received 13 May 2015
Received in revised form 30 March 2016
Accepted 17 May 2016
Available online xxx

Keywords:
Data acquisition systems
Data management
Data formats
MDSplus

a b s t r a c t

MDSplus is a data acquisition and analysis system used worldwide predominantly in the fusion research
community. Development began 29 years ago on the OpenVMS operating system. Since that time there
have been many new features added and the code has been ported to many different operating systems.
There have been contributions to the MDSplus development from the fusion community in the way of
feature suggestions, feature implementations, documentation and porting to different operating systems.
The bulk of the development and support of MDSplus, however, has been provided by a relatively small
core developer group of three or four members. Given the size of the development team and the large
number of users much more effort was focused on providing new features for the community than on
keeping the underlying code and documentation up to date with the evolving software development
standards. To ensure that MDSplus will continue to provide the needs of the community in the future,
the MDSplus development team along with other members of the MDSplus user community has com-
menced on a major quality improvement project. The planned improvements include changes to software
build scripts to better use GNU Autoconf and Automake tools, refactoring many of the source code mod-
ules using new language features available in modern compilers, using GNU MinGW-w64 to create MS
Windows distributions, migrating to a more modern source code management system, improvement of
source documentation as well as improvements to the www.mdsplus.org web site documentation and
layout, and the addition of more comprehensive test suites to apply to MDSplus code builds prior to
releasing installation kits to the community. This work should lead to a much more robust product and
establish a framework to maintain stability as more enhancements and features are added. This paper
will describe these efforts that are either in progress or planned for the near future.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

MDSplus [1,2] is a collection of libraries and applications used
for acquisition, access and storage of scientific data. It provides a
wide range of functionality including:

∗ Corresponding author.
E-mail address: twf@psfc.mit.edu (T.W. Fredian).

• Data acquisition from measurement devices; organization of the
storage of both experimental measurements, analysis results and
various metadata associated with those data items

• Access to the data and metadata from a wide variety of program-
ming languages and utilities

• Remote data access using a variety of transport mechanisms.

In the early 1980s, Tom Fredian and Josh Stillerman developed
a data system called MDS for use on the Alcator and Tara fusion

http://dx.doi.org/10.1016/j.fusengdes.2016.05.034
0920-3796/© 2016 Elsevier B.V. All rights reserved.

dx.doi.org/10.1016/j.fusengdes.2016.05.034
dx.doi.org/10.1016/j.fusengdes.2016.05.034
http://www.sciencedirect.com/science/journal/09203796
http://www.elsevier.com/locate/fusengdes
http://www.mdsplus.org
http://www.mdsplus.org
http://www.mdsplus.org
mailto:twf@psfc.mit.edu
dx.doi.org/10.1016/j.fusengdes.2016.05.034

Please cite this article in press as: T.W. Fredian, et al., MDSplus quality improvement project, Fusion Eng. Des. (2016),
http://dx.doi.org/10.1016/j.fusengdes.2016.05.034

ARTICLE IN PRESSG Model
FUSION-8777; No. of Pages 4

2 T.W. Fredian et al. / Fusion Engineering and Design xxx (2016) xxx–xxx

experiments at the Massachusetts Institute of Technology. That
system was quickly adopted by several other fusion research facili-
ties. It was also evaluated for possible use at two new experiments
under construction, the RFX experiment in Padova, Italy and the
ZTH in Los Alamos, New Mexico. Software developers at these two
facilities had some interesting ideas for greatly enhancing the func-
tionality of MDS so in 1987 a collaboration between MIT, RFX and
LANL was initiated to develop a new data system providing sig-
nificantly extended capabilities compared to MDS. Over the next 3
years the original core of MDSplus was developed and was ready
for use at the startup of Alcator-C and RFX experiments in 1990. The
ZTH experiment lost its funding and never began operation. Origi-
nally developed on the OpenVMS [3] platform, MDSplus has since
grown in functionality and has been ported to numerous computing
platforms. MDSplus is used by scientists and engineers worldwide
mostly in the field of fusion energy research. Currently we are see-
ing upwards of 2500 downloads of MDSplus installation packages
per year. This includes both new installations and updates to exist-
ing installations.

The development and support of MDSplus has been accom-
plished by a relatively small core group and much effort was
targeted on adding new functionality to the system requested by
the user community and providing support for a growing number of
computing platforms. More recently we have increased the num-
ber of core developers adding more expertise in modern coding
standards and compiler capabilities and have shifted the focus to
improve the quality of the core MDSplus product utilizing a variety
of techniques discussed in this paper.

2. OpenVMS origins

As mentioned above, MDSplus was originally developed on
the Digital Equipment Corporation’s OpenVMS operating system.
This system provided a wide range of utilities which developers
could build upon to provide specialized applications. MDSplus was
designed and built to take advantage of the tools provided by the
operating system. When it was later decided to port MDSplus to
other operating systems it was anticipated that OpenVMS would be
the predominant OS for MDSplus use. So rather than making major
changes to the MDSplus code, the port to other operating systems
was accomplished by emulating the utilities provided by OpenVMS.
Surprisingly, at the time, OpenVMS use began to rapidly decrease
and soon most sites migrated from OpenVMS to Linux based operat-
ing systems. Today essentially all sites using MDSplus have moved
off of OpenVMS. While MDSplus functions and performs well on
Linux systems, it’s code base is still littered with OpenVMS con-
cepts. Part of this quality improvement project is to remove unused
sections of code specific to OpenVMS and to replace calls to Open-
VMS library functions, which are emulated on the other platforms,
with standard C library functions.

3. Rewrite OpenVMS based utilities

Porting MDSplus to non-OpenVMS platforms entailed emulat-
ing some major tools provided by OpenVMS. The best example of
this was the implementation of the command line based utilities
found in MDSplus. These were all based on the DCL [4], “Digital
Command Language”, utility provide by OpenVMS which enabled
a developer to describe the command syntax in a special language
and build a command interpreter with the command parsing, syn-
tax validation and execution code dispatching all provided by the
DCL utility. To provide this same capability on non-OpenVMS plat-
forms, an emulation of the DCL utility was implemented. The entire
implementation of the utility was done from scratch and utilized
some questionable techniques which turned out to be quite suscep-

tible to compiler and platform differences. Only after running some
modern compiler based code analysis features was it discovered
that this code was making assumption about things like memory
layout and call stacks that could produce intermittent failures or
break entirely if the compilers chose to behave differently. As part
of the quality improvement project, this entire DCL emulation util-
ity has been rewritten using standard tools such as flex [5], bison [6]
and xml [7] to provide the command definitions and command line
parsing. One major additional benefit of this project was the addi-
tion of a “HELP” command for the utilities which provides detailed
descriptions of the available commands. This help feature was in
the original OpenVMS DCL utility but was omitted from the port to
the other platforms since it was assumed that one could always log
into their OpenVMS system if they needed it.

4. GNU compiler standardization

MDSplus was ported to many other operating systems in the late
1990s when most other platforms had platform specific compilers
each with their own idiosyncrasies. The MDSplus code became rid-
dled with conditional compilation sections based on the particular
compiler being used. Today, all of the platforms that MDSplus cur-
rently supports, use GNU compilers by default or at least have GNU
compilers available. By standardizing on the GNU compiler, many
if not all of the complicated conditional compilation sections of the
MDSplus code can be removed, making the code much easier to
read and support. The GNU library functions are for the most part
standardized across most of the platforms so many of the configu-
ration tests for operating system features can be eliminated as well.
In addition, the code will be analyzed using the compiler’s ability
to display a wide variety of warning messages indicating poten-
tial problems or extraneous house cleaning problems such as old
variables being declared but no longer being used.

It is now even possible to compile and link windows applica-
tions using the GNU MingW-w64 [8] compiler. The original port to
Windows was done using Microsoft’s Visual Studio product. This
also required numerous constructs in the source code to do differ-
ent operations if the source was being compiled with Visual Studio
compilers versus Linux based compilers. In addition, Visual Studio
used very different compile and link options so the work done to
use automake tools was not compatible with the Windows build of
the software. The Windows compilers also did not abide by many of
the compiler standards which limited the use of many advances in
the programming languages. The MingW-w64 compiler is a cross
compiler so all of the compile and linking of Windows libraries and
applications can be performed on a Linux system which can use all
of the same build and development tools as all of the other Linux
based distributions. The libraries built with the MingW-w64 com-
piler are compatible with third party applications such as LabVIEW
and Python which have often been a problem with the other tools
such as Cygwin which is better suited for developing standalone
applications for Windows. There is currently still one issue with
using MinGW-w64 compilers to build libraries for use with Visual
Studio built applications. The exception handling in C++ applica-
tions differ between Visual Studio applications and C++ libraries
built with MinGW-w64. Currently there is only one object oriented
library in MDSplus for use with C++. To resolve this incompatibility,
we have been including in the installation kits two versions of the
MDSplus C++ library, one compatible with MingW-w64 built appli-
cations and one built with Visual Studio to be compatible with user
applications built with Visual Studio. Everything but this one C++
Visual Studio dll is built on a Linux based system.

Moving from the support of many different compilers to stan-
dardizing on GCC compilers has enabled us to greatly reduce the

dx.doi.org/10.1016/j.fusengdes.2016.05.034

Download English Version:

https://daneshyari.com/en/article/6745088

Download Persian Version:

https://daneshyari.com/article/6745088

Daneshyari.com

https://daneshyari.com/en/article/6745088
https://daneshyari.com/article/6745088
https://daneshyari.com

