
Fusion Engineering and Design 88 (2013) 1912– 1915

Contents lists available at ScienceDirect

Fusion Engineering and Design

jo ur n al hom epa ge: www.elsev ier .com/ locate / fusengdes

Breaking down the requirements: Reliability in remote handling software

Pekka Alho ∗, Jouni Mattila
Department of Intelligent Hydraulics and Automation, Tampere University of Technology, Finland

h i g h l i g h t s

� We develop a set of generic recommendations for control system software requirements.
� We analyze ITER remote handling system requirements.
� Requirement specifications have major impact on software reliability.
� Reliability requirements need to be managed as a system measure.
� Systematically developed requirements can be used to form a dependability case.

a r t i c l e i n f o

Article history:
Received 13 September 2012
Received in revised form 22 October 2012
Accepted 7 November 2012
Available online 4 December 2012

Keywords:
remote handling, control system, software,
requirements, reliability, dependability

a b s t r a c t

Software requirements have an important role in achieving reliability for operational systems like remote
handling: requirements are the basis for architectural design decisions and also the main cause of defects
in high quality software. We analyze related recommendations and requirements given in software safety
standards, handbooks etc. and apply them to remote handling control systems, which typically have
safety-critical functionality, but are not actual safety-systems–for example the safety-systems in ITER
will be hardware-based.

Based on the analysis, we develop a set of generic recommendations for control system software
requirements, including quality attributes, software fault tolerance, and safety and as an example we
analyze ITER remote handling system software requirements to identify and present dependability
requirements in a useful manner. Based on the analysis, we divide a high-level control system into safety-
critical and non-safety-critical subsystems, and give examples of requirements that support building a
dependable system.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

ITER will feature a large number of remote handling (RH) sys-
tems, including divertor, blanket, port handling, viewing, neutral
beam, transfer cask and hot cell. Proper maintenance and opera-
tion of ITER is not possible without these systems, and their reliable
operation is necessary for ensuring that the plant is available for
fusion experiments. Achieving this goal requires reliable mechani-
cal components and designs, together with a suitable maintenance
strategy. However, software failures have passed hardware as the
most common source for computer system outages already in the
last century [1], and modern control systems have complex func-
tionality implemented with software. Software failures therefore
present a major threat for ITER RH systems, which are safety-critical
in the sense that a fault could damage research equipment or cause
maintenance outages, potentially reducing experimental time.

∗ Corresponding author.
E-mail address: pekka.alho@tut.fi (P. Alho).

Software requirement specifications have an important role in
establishing safe and reliable RH operations, especially since the RH
systems will be developed by several contractors. This is because:
1) requirements set targets that are used to verify software qual-
ity, including reliability; 2) quality attributes (i.e. non-functional
requirements for “how well” the system should perform) drive sig-
nificant architectural and design decisions [2] and 3) requirement
specification is the largest source for defects in high-quality soft-
ware [3]. In order to improve dependability in control systems,
our research evaluates effective ways for RH system development
teams to present related software requirements.

2. Comparison of RAMI process and dependability

Reliability is defined as the probability of failure-free operation
for a specified period of time in specified environment [4]. It is also
one of the key attributes in the RAMI process [5] used in the ITER
project to manage risks in the facility development and design. In
the RAMI process every system undergoes a risk-analysis to eval-
uate what can go wrong and to recommend spare components,

0920-3796/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.fusengdes.2012.11.008

dx.doi.org/10.1016/j.fusengdes.2012.11.008
http://www.sciencedirect.com/science/journal/09203796
http://www.elsevier.com/locate/fusengdes
mailto:pekka.alho@tut.fi
dx.doi.org/10.1016/j.fusengdes.2012.11.008

P. Alho, J. Mattila / Fusion Engineering and Design 88 (2013) 1912– 1915 1913

back-up systems, maintenance schedules, etc. to reduce the risk
level of breakdown to minimum [6]. RAMI stands for:

• Reliability (continuity of correct service),
• Availability (readiness for correct service),
• Maintainability (ability to undergo modifications and repairs)

and
• Inspectability (ability to undergo easy visits and controls) [6,7].

This is similar to the concept of dependability used in computing
and communication systems. Dependability has same attributes,
except instead of inspectability it has integrity (absence of improper
system alterations) and safety (absence of catastrophic conse-
quences on the user and environment) [7], being more relevant
for RH software.

Specifications and standards usually implicitly or explicitly
focus on hardware and are largely silent about software reliabil-
ity and other quality attributes [8], and the RAMI process seems
to be no exception. E.g. inspectability is essentially a requirement
for mechanical systems. Dependability-related requirements for
software-based systems need to take into account that failure
mechanisms of software differ from mechanical systems. Hardware
usually fails because of physical faults caused by wear and aging,
whereas software failures are typically caused by human errors
made in the development phase of the system and are determinis-
tic in nature, making software faults harder to predict, locate and
correct [4]. Because of these reasons, proving the reliability of soft-
ware is not as straightforward as for mechanical subsystems and
the related requirements for software need to reflect this.

3. System fault tolerance and dependability requirements

In this chapter we analyze the practices of developing depend-
ability requirements and apply them to RH system software. RH
systems typically need high reliability and have a combination
of safety-critical and non-critical subsystems. Software systems
are complex, which makes fault tolerant and dependable software
costly: development often includes risk assessments, verification
& validation procedures, and restrictions on design choices. How-
ever, use of a particular technique or techniques is not evidence of
software quality, and even certified systems fail [9].

For high quality software–like control systems–the require-
ments specification is the most important source of delivered
defects [3]. These defects can be due to errors, changes or omis-
sions in requirements. Errors and changes can be usually discovered
and managed with inspections (validation of requirements) and
tools, but missing requirements can be considerably more diffi-
cult to detect. Possible sources for software requirements include
system requirements specification (which includes system safety
requirements), software hazard & risk analyses, hardware & envi-
ronmental constraints and customer input [10]. To adequately
define dependability and fault tolerance requirements for a sys-
tem, several aspects of the software must be documented, including
quality attributes, intended modes of operation, timing require-
ments, failure modes, and safety-related functionality which are
briefly covered next.

3.1. Dependability objectives

The dependability objectives are documented in quality
attributes (reliability, availability etc.). For control systems, impor-
tant attributes include e.g. interoperability and evolvability (which
has longer-term focus when compared to maintainability) because
of the long expected lifetimes. Different subsystems may have dif-
ferent target levels of reliability.

Dependability objectives must be defined for a given environ-
ment, i.e. operation conditions. No system can be dependable under
all conditions, so the claims must be made explicit [11]. These
include not only environmental factors, but also expected inter-
action with external systems and humans.

3.2. Operation modes

Modes of operation are based on operational conditions or mis-
sion phase. By specifying operation modes we can limit the amount
of functionality that has to be considered at a time.

Operation modes can also affect enabled commands or allow-
able limits for parameters, which has safety implications. Examples
of operation modes important to dependability include automatic
& manual, degraded operation and recovery modes.

3.3. Timing requirements

Timing requirements include communication deadlines, samp-
ling rates, time to criticality etc. If the system has timing
requirements that include hard deadlines, this has major impact
for the system architecture design.

Safety and reliability can also be in odds–reliability can cause
non-determinism for communications, as resent information could
already be old. Especially in safety-critical systems it is often more
important to keep sending up-to-date information.

3.4. Fault tolerance and responses to undesired events

Even though software developers work to create correct
requirements and code, software will always have faults–and the
number of delivered defects per function point goes up with soft-
ware size and complexity [3]. Thus we also need to consider
responses to undesired events, even if the software has low number
of defects. This includes needs for fault tolerance (error detection,
recovery, redundancy), specifying failure modes, i.e. how the sys-
tem should fail, and what the system is not allowed to do in the
case of failure.

Another factor that has to be considered in the case of errors is
the tradeoff between robustness and correctness: robust software
function tries to return some value (even if inaccurate) and correct
software will return no results, which is usually better for safety-
critical systems since faults will be easier to detect.

3.5. Safety-critical requirements

Reliability focuses in costs of failure and downtime, whereas
safety focuses in dangerous failure modes. When a potentially
unsafe command is detected, safety system inhibits the hazardous
command and initiates transition to a known safe state. E.g. ITER
will have a hardware-based plant interlock system which imple-
ments investment protection functions [12].

Safety-critical software covers software that has impact on
hazards (cf. safety systems that are used for avoidance or control
of hazards). Plant subsystems like RH may have complex safety-
related functionality which must be implement with software.
Examples of such functions include stability of machines, anti-
collision systems and reduced speed & restricted space for robots
[13]. Any such software feature identified as a potential hazard
should be designated as safety-critical to ensure that future changes
and verification processes can take them into consideration [10].
Candidates for safety-critical items list can be found e.g. with soft-
ware FMEA.

Download English Version:

https://daneshyari.com/en/article/6746451

Download Persian Version:

https://daneshyari.com/article/6746451

Daneshyari.com

https://daneshyari.com/en/article/6746451
https://daneshyari.com/article/6746451
https://daneshyari.com

