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a b s t r a c t

A new iterative model-free (isoconversional) method with integration over a given range of conversion
for determination of the activation energy using non-isothermal data recorded at several heating rates
has been suggested. The advantages of applying this method in comparison with often used linear and
nonlinear isoconversional methods are put in evidence. The suggested method was applied to experimen-
tal non-isothermal data for degradation of polyvinyl chloride, decomposition of ammonium perchlorate
and crystallization of poly(ethylene terephthalate) melt. The so obtained values of the activation energy
were compared with those resulting from other methods of analysis.
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1. Introduction

Under non-isothermal conditions at a linear heating rate, the
kinetics of heterogeneous reactions is usually described by the rate
equation:

d˛

dt
≡ ˇ

d˛

dT
= Af (˛) exp

(
− E

RT

)
(1)

where ˛ is the degree of conversion, t is the time, T is the tempera-
ture, ˇ is the linear heating rate, A is the pre-exponential factor, E is
the activation energy, f(˛) is the differential function of conversion
and R is the gas constant.

Starting with this equation, various procedures for evalu-
ating the kinetic triplet (A, E, f(˛)) were developed. As has
results from some critical analyses [1–14], the correct determi-
nation of non-isothermal kinetic parameters involves the use
of experimental data recorded at several heating rates. These
data have allowed applying the isoconversional (model-free)
methods in assessing the activation energy on the conversion
degree that can be correlated with the investigated process
mechanism. Isoconversional procedures are classified as either
linear or nonlinear. In the linear procedures, from which we
mention Friedman (FR) [15], Flynn–Wall–Ozawa (FWO) [16,17],
Kissinger–Akahira–Sunose (KAS) [18], Li–Tang (LT) [19,20], the
activation energy is evaluated from the slope of a straight line, while
in integral [21–25] and differential [26] nonlinear procedures the
activation energy is evaluated from a specific minimum condition.
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Both linear and nonlinear procedures may be either differential or
integral according to the equation that underlies them, namely Eq.
(1) or its integral form:∫ ˛

0

d˛

f (˛)
≡ g (˛) = A

ˇ

∫ T˛

0

[
exp

(
− E

RT

)]
dT ≡ A

ˇ
I(E˛, T˛) (2)

where g(˛) is the integral conversion function and I(E˛, T˛) is the
temperature integral that cannot be exactly resolved.

The linear methods use some simple approximations of the tem-
perature integral, like those suggested by Doyle [27] and Coats and
Redfern [28], which exhibit a relative low accuracy. On the other
hand, the integral nonlinear procedures allow using more pre-
cise approximations of this integral, like the rational expressions
given by Senum and Yang [29]. Therefore, the application of inte-
gral nonlinear procedures leads to accuracy values of E. However,
in comparison with linear methods, the use of nonlinear methods
need a longer computational time. An attempt to outrun this disad-
vantage was performed by Gao et al. [30] who suggested an iterative
procedure in which is assumed the reaction order model.

The derivation of equations that underlie the integral linear
or nonlinear procedures assumes the independence of the activa-
tion parameters (E and A) on the conversion degree. On the other
hand, it was pointed out [3,31–34] that when E depends on ˛,
some important differences exist between E values determined by
differential and integral isoconversional methods. In such a case,
the differential isoconversional methods, like FR [15] and nonlin-
ear differential [26] methods, as well as the modified (advanced)
nonlinear method suggested by Vyazovkin [24] are recommended
as the results obtained by integral isoconversional methods are
dependent on the history of the system in the range 0–˛ [4]. For
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some cases in which activation energy changes with conversion
degree, the dependence of E˛ on lower limit of integral was also
put in evidence [35] by applying LT method.

Because differential methods employ instantaneous rate values,
it is sensitive to inherent noise and tends to be numerically unstable
[36]. The corresponding errors could be reduced by smoothing of
the experimental data. In order to eliminate this systematic error,
Vyazovkin [24] suggested a modification of the integral nonlin-
ear method previously worked out by him [21], which consists in
determining the integral I(E˛, T˛) over a small �˛ range (modified
nonlinear method). Budrugeac [26] pointed out that for �˛ → 0,
the E˛ values obtained by this method are practically equal to those
obtained by FR method. Recently Cai and Chen [37] suggested a iter-
ative linear integral isoconversional method for E˛ evaluation that
also uses the integration over a small �˛ range and leads to correct
values of the activation energy in much less time than Vyazovkin
method.

In this paper, a new iterative integral isoconversional method
with integration over a given range of conversion will be suggested.
It will pointed out the following advantages of this method: the
applicability for large and small �˛ ranges; the possibility of using
of precise approximations for temperature integral, even the val-
ues of this integral obtained by numerical integration performed by
Mathematica software system; put in evidence the importance of
lower limits of integration for E˛ evaluation when E depends on ˛;
the method can be applied even when the initial temperature cor-
responding to ˛ = 0 is randomly choice from the range 0 – minimum
onset temperature; the application of this method in certain favor-
able cases could indicate the range of conversion degree in which
the kinetics of the complex investigated process is determined by
a certain step characterized by activation parameters that do not
depend on ˛.

2. Theoretical part

The integration of Eq. (1) for the limits ˛1(T1) and ˛2(T2), and
constant heating/cooling rate leads to:

g(˛2) − g(˛1) = A

ˇ

∫ T2

T1

[
exp

(
− E

RT

)]
dT (3)

In the integral linear isoconversional methods, as FWO [19,20] and
KAS [21], as well as in nonlinear integral isoconversional method
suggested by Vyazovkin [21], it is considered the case in which
˛1 = 0. In such condition,

∫ T1
0

[exp(−E/RT)]dT ≈ 0 [38] and Eq. (3)
turn into Eq. (2).

The integral temperature from the right member of Eq. (3) can
be expressed as [25]:

I(E, T1, T2) =
∫ T2

0

[
exp

(
− E

RT

)]
dT

−
∫ T1

0

[
exp

(
− E

RT

)]
dT ≡ E

R
[p(x2) − p(x1)] (4)

where x = E/RT .
From the numerous approximations suggested for p(x) in Sec-

tion 3, we will use the four order approximation given by Senum
and Yang [29], which exhibits a very high accuracy (the relative
error lower than 0.6% for x ≥ 1):

p (x) = e−x

x

x3 + 18x2 + 86x + 96
x4 + 20x3 + 120x2 + 240x + 120

(5)

Eq. (3) can be written as:

g(˛2) − g(˛1)= AE

Rˇ
(T2−T1)

[
exp

(
− E

RT2

)]
p(x2) − p(x1)

(T2 − T1)
[
exp

(
− E

RT2

)]
(6)

from which it results:

ln
ˇ

T2 − T1
= ln

A

g(˛2) − g(˛1)
+ ln RI − E

RT2
(7)

where RI =
∫ T2

T1
[exp(−E/RT)]dT

(T2−T1)[exp(−E/RT2)] = E
R

p(x2)−p(x1)
(T2−T1)[exp(−E/RT2)] .Considering

that ˛1 = 0, T1 = T0 (onset temperature of the considered process)
and RI = 1, this relation turn into:

ln
ˇ

T − T0
= ln

A

g (˛)
− E

RT
(8)

Eq. (8) was derived by Kennedy and Clark [39] by integration of rate
Eq. (1) assuming T =const. and introducing in the obtained relation
ˇ = T – T0/t. As was recently noted by Ortega [40] the derivation of
Eq. (8) is conceptually erroneous because, in non-isothermal con-
dition, the change of variable t with T must be performed before
the integration of Eq. (1) considering T = const.

According to relation (7):

E = −R
d ln

(
ˇ/ (T2 − T1)

)
d
(

1/T2
) − R

d ln RI

d
(

1/T2
) ≡ EKC − R

d ln RI

d
(

1/T2
) (9)

where EKC = − R(d ln(ˇ/T2 − T1))/d(1/T2)) is the activation energy
corresponding to a procedure based on the relation:

ln
ˇ

T2 − T1
= ln

A

g(˛2) − g(˛1)
− E

RT2
(10)

This is similar with that derived by Kennedy and Clark [39].
In order to evaluate the activation energy using Eq. (9), the fol-

lowing iterative procedure is proposed:

I. For RI = const., by plotting ln(ˇ/(T2 − T1)) vs. 1/T2 activation
energy E(1) ≡EKC is obtained from the slope of this straight line.

II. E(1) being introduced in the expression of RI, the value of E(2) is
evaluated from the slope of the straight line (ln(ˇ/(T2 − T1)) − ln
RI) vs. 1/T2.

III. Let E(2) replace E(1) and repeat the step II until |(E(i+1) − E(i))| ≤ 0.1
kJ mol−1.

In comparison with integral isoconversional methods, like FWO
and KAS methods, the above suggested iterative procedure exhibits
the advantage of the possibility of using for temperature integral
one of the more precise approximations or the values of this integral
exactly numerically evaluated by Mathematica software system.
Another advantage is that this procedure can be applied for all
ranges of �˛, even small �˛ ranges.

Obviously, E = EKC for RI = const. = C. In order to put in evidence
the cases in which this condition is respected, we will consider that
for relative small range of T2 (in the experimental cases which will
be analyzed in Section 3: �T2 ≤ 50 K), the exact value of I(E, T2, T1)
is proportional with the following gross approximate expression
of the temperature integral suggested by Mianowscki and Radko
[41]:

I(E, T2, T1) ≈ C∗IMR(E, T2, T1) = C∗
{

T2

[
exp

(
− E

RT2

)]

− T1

[
exp

(
− E

RT1

)]}
(11)

As we will show in Section 3, C* value exhibits a relative standard
deviation around the average value lower than 4%.

Substituting the expression (11) in the relation of RI, the condi-
tion RI = C becomes:

T2 (C∗ − C)
[

exp
(

− E

RT2

)]
+ T1

{
C

[
exp

(
− E

RT2

)]

− C∗
[

exp
(

− E

RT1

)]}
= 0 (12)
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