
www.elsevier.com/locate/ijcip

Available online at www.sciencedirect.com

Security considerations related to the use of mobile
devices in the operation of critical infrastructures

Alessandro Armando, Alessio Merlon, Luca Verderame

Computer Security Laboratory, DIBRIS – University of Genoa, Viale F. Causa 13, 16145 Genoa, Italy

a r t i c l e i n f o

Article history:

Received 8 January 2014

Accepted 4 October 2014

Available online 17 October 2014

Keywords:

Mobile devices

Android

Malware

Cross-layer interplay

Security

Critical infrastructure

a b s t r a c t

An increasing number of attacks by mobile malware have begun to target critical

infrastructure assets. Since malware attempts to defeat the security mechanisms provided

by an operating system, it is of paramount importance to understand the strengths and

weaknesses of the security frameworks of mobile device operating systems such as

Android. Many recently discovered vulnerabilities suggest that security issues may be

hidden in the cross-layer interplay between the Android layers and the underlying Linux

kernel. This paper presents an empirical security evaluation of the interactions between

Android layers. The experiments indicate that the Android Security Framework does not

discriminate between callers of invocations to the Linux kernel, thereby enabling Android

applications to directly interact with the kernel. This paper shows how this trait allows

malware to adversely affect the security of mobile devices by exploiting previously

unknown vulnerabilities unveiled by analyses of the Android interplay. The impact of

the resulting attacks on critical infrastructures is discussed. Finally, an enhancement to

the Android Security Framework is proposed for detecting and preventing direct kernel

invocations by applications, thereby dramatically reducing the impact of malware.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Mobile devices are no longer used only for personal and
leisure activities; they are finding their way into organiza-
tions and businesses. Since mobile operating systems are
geared for personal use, their use in other environments is
raising serious security concerns, especially when mobile
devices are used to monitor and control critical infrastructure
assets. Although a variety of organizations have become very
interested in the Bring Your Own Device (BYOD) paradigm
[14] and several solutions have been put forward [5,22,37],
security concerns persist and the paradigm has yet to gain
wide acceptance.

Mobile devices are also already routinely used by operators
to monitor and control critical infrastructures. For example, in

Haverhill, Massachusetts, on-call workers use tablet PCs to
monitor alarms and other systems in the local water treat-
ment plant that serves 58,000 customers [23]. But many more
solutions addressing a variety of application scenarios are
emerging, including a collaborative indoor positioning system
designed for time-critical scenarios (e.g., military operations)
where infrastructure-based localization is impossible [30] and a
mobile radiation detector with the ability to log and share data
using 3G and GPS technologies [25]. The transition from
personal to professional use of mobile devices is driving more
stringent security requirements. Needless to say, fulfilling these
requirements is crucial when mobile devices are used in the
critical infrastructure.

As pointed out in a 2013 Mobile Threat Report by F-Secure
Labs [20], malware is the primary threat facing mobile

http://dx.doi.org/10.1016/j.ijcip.2014.10.002
1874-5482/& 2014 Elsevier B.V. All rights reserved.

nCorresponding author.
E-mail address: alessio.merlo@unige.it (A. Merlo).

i n t e r n a t i o n a l j o u r n a l o f c r i t i c a l i n f r a s t r u c t u r e p r o t e c t i o n 7 (2 0 1 4) 2 4 7 – 2 5 6

http://dx.doi.org/10.1016/j.ijcip.2014.10.002
http://dx.doi.org/10.1016/j.ijcip.2014.10.002
http://dx.doi.org/10.1016/j.ijcip.2014.10.002
http://dx.doi.org/10.1016/j.ijcip.2014.10.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijcip.2014.10.002&domain=pdf
mailto:alessio.merlo@unige.it
http://dx.doi.org/10.1016/j.ijcip.2014.10.002

devices. Malicious apps can be retrieved from application
markets (e.g., Apple Store, Google Play, Samsung Store and
Windows Store) and installed on mobile devices. This mal-
ware exploits vulnerabilities in other applications or in the
mobile operating system itself. When executed, it may steal
sensitive information, corrupt the integrity of data, and even
affect device usability. Recent studies [29] have shown that it
is not particularly difficult for a programmer to implement
and distribute malware using a public store. The deployment
of countermeasures at the market-side (see, e.g., [3,27]) may
mitigate adverse effects, but it does not eradicate malicious
applications [31,38].

This paper focuses on the highly popular Android operating
system. Android engages a Java stack built on top of a native
Linux kernel. The services and their functionality are realized
through the interplay of components residing in different layers
of the operating system that invoke function calls. The Android
Security Framework (ASF) stems from the fruitful combination
of security mechanisms in different layers, namely the stan-
dard discretionary access control (DAC) model of Linux, the
isolation offered by the Java Virtual Machine (JVM), and a
collection of Android-specific mechanisms such as the Android
permission system. The Android Security Framework oversees
the cross-layer interplay among components to detect mal-
icious or unwanted interactions and intervene, if necessary.
However, the security that it offers has been recently chal-
lenged by the discovery of a number of vulnerabilities involving
different layers of the Android stack and the associated cross-
layer interplays (see, e.g., [6,12,16]).

One example is the Zygote vulnerability reported in [6],
which enables malware to force a Linux kernel to fork an
unbounded number of processes, rendering the device com-
pletely unresponsive. In this case, the problem arises from
the fact that the Android Security Framework is unable to
discriminate between a legitimate Android cross-layer inter-
play performed by trusted Android services and an insecure
interplay involving an application; this permits the direct
invocation of a critical kernel functionality (fork operation) by
any application. The essence of the problem is the lack of
control on Linux system calls that are involved in launching
new applications.

This paper examines if the lack of control between the
Android stack and Linux kernel is limited to certain types of
calls or if it is a more general issue with the Android Security
Framework. If the latter is true, there is the distinct fear that
malware could leverage a wide attack surface that spans the
entire native Linux kernel. To ascertain the situation, an
empirical assessment is conducted for the cross-layer inter-
play between the Android stack and Linux kernel. The
assessment provides insights into the extent to which the
Android Security Framework can discriminate between
trusted and untrusted invocations of core system function-
ality. The results demonstrate that very little control is
exercised by the Android Security Framework and that mal-
ware may force and exploit insecure interplays, including
attacks that adversely affect privacy and device usability.
This paper also discusses the impact that such Android-
based malware may have on mobile devices that are used
in the critical infrastructure. Finally, an enhancement is
proposed to the Android Security Framework that helps

recognize and effectively prevent insecure cross-layer inter-
plays between the Android stack and Linux kernel.

2. Related work

Android security has received considerable attention during
the past few years. For example, general surveys are available
in [18,35], vulnerabilities are reported in [6,33] and vulner-
ability detection techniques are proposed in [12,21]. Most of
the research focuses on enhancing the Android architecture
and its security model.

Researchers have shown that the Android platform suffers
from vulnerabilities that allow malware to perform denial-of-
service attacks [6], create covert channels [33] and launch web
attacks [28] and privilege escalation attacks [16]. Some vul-
nerabilities are intrinsic to the Android security model (see,
e.g., [16]), while others are due to security flaws, bugs and the
lack of controls in the security mechanisms that constitute
the Android Security Framework (see, e.g., [6,28,33]).

Several tools have been developed for malware detection and
application certification. For example, SCanDroid [21] performs
automatic application certification by assessing whether appli-
cation data flows are consistent with the application manifest.
Comdroid [12] assesses the actual privileges of Android applica-
tions by analyzing their intent-based communications. Another
tool [34] statically analyzes Android executables to compare
function calls with malware signatures.

Solutions for malware detection at the market-side have
also been developed. An example is Google Bouncer [27], a
malware detector that runs on the Google Play store; how-
ever, Oberheide and Miller [31] have shown that Bouncer is
easily circumvented. DroidRanger [40] is an application mar-
ket analyzer that combines a footprint-based detection
engine of known malware, focusing on API calls and declared
permissions, with a heuristic detection engine for zero-day
malware. These tools are powerful, but they do not consider
cross-layer interplays between the Android stack and Linux
kernel or direct kernel invocations via system calls, which is
the focus of this paper.

The monitoring of Android system calls is performed by
the Android Application Sandbox (AASandbox) [8] and by
Crowdroid [10]. AASandbox can perform static and dynamic
analyses in a fully isolated environment through a loadable
kernel module that monitors system calls. Crowdroid carries
out a dynamic analysis of application behavior. Based on the
collaboration with the Android user community, Crowdroid
can distinguish between benign and malicious applications of
the same name and version, detecting anomalous patterns in
the execution of system calls. These approaches are different
from the one presented in this paper for two reasons: (i) they
log only the return value of each system call without logging
the parameters and (ii) they do not provide security assess-
ments of system calls, nor propose solutions that could
mitigate possible malicious interplays.

Formal frameworks for modeling application behavior in
terms of interactions have been proposed. Chaudhuri [11] has
proposed a language-based approach to infer the security
properties of Android applications. Although it allows for the
formal assessment of application properties, the approach does

i n t e r n a t i o n a l j o u r n a l o f c r i t i c a l i n f r a s t r u c t u r e p r o t e c t i o n 7 (2 0 1 4) 2 4 7 – 2 5 6248

Download	English	Version:

https://daneshyari.com/en/article/6747703

Download	Persian	Version:

https://daneshyari.com/article/6747703

Daneshyari.com

https://daneshyari.com/en/article/6747703
https://daneshyari.com/article/6747703
https://daneshyari.com/

