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a b s t r a c t

In civil and mining operations that involve ground excavation and support, the loads are distributed
between the ground and support depending on their relative stiffness. This paper presents the develop-
ment of conceptual single-degree-of-freedom models, which are used to derive equations for estimating
displacements and stresses for ground-support interaction problems encountered in pillars in room-and-
pillar mining (natural support system), and liners for circular vertical shafts (artificial support systems).
For pillar assessment, mine-pillar interaction curves can be constructed using a double spring analogy.
Additionally, the effectiveness of different support systems can be evaluated depending on their effect
upon the mine-pillar system. For shaft design, an initial estimation of the required lining strength and
thickness can be readily made based on a double ring analogue. For both problems, the results from
the proposed approach compare well with those obtained by finite element numerical simulations.
� 2018 Published by Elsevier B.V. on behalf of China University of Mining & Technology. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Many civil engineering and mining applications involve the
interaction of the natural ground with man-made structures and/
or ground support systems. Different finite-element codes are cap-
able of accounting for ground-support or soil-structure interaction
(SSI) effects, by explicitly modeling the entire problem, i.e. ground
and structure. Due to their complexity, simpler conventional
design methods and codes often neglect SSI effects, and therefore
may lead to results that can be inaccurate and may often be too
conservative.

The concept of ground response curves (GRC) that allow for a
graphical representation of the interaction of tunnel convergence
with tunnel support was originally developed by the civil tunnel-
ing industry in order to facilitate the timing of support installation.
GRC have the advantages of being both a relatively simple and effi-
cient design tool, accounting for tunnel-support interaction when
estimating stresses and deformations of both systems. The GRC
approach is based on a series of simplifying assumptions (e.g. cir-
cular tunnel under a hydrostatic stress field, homogeneous ground,
etc.) to avoid the complexities stemming from uneven loading at
different points around the tunnel.

In this paper, two types of ground-support problems are dis-
cussed: room and pillar mines, and circular vertical shafts. The

term ground-support used in this paper, in the case of the room-
and-pillar mining, the room in between pillars represents the
‘‘ground”, while the pillars are the ‘‘natural support”. In the case
of shafts, the excavation or cavity constitutes the ‘‘ground”, while
the liner is the ‘‘artificial support”.

For both applications, the problem is simplified so that the
interaction process of the ground and the support are fully
accounted for, without the need for a full numerical analysis. This
is achieved by deriving expressions for the spring stiffness equiva-
lent to the ground boundary. Numerical models are then used for
both derivation and verification of the proposed method.

2. Mine-pillar analogue to an elastic spring system

In the design of room-and-pillar systems, the loading capacity
of a pillar and the assessment of pillar’s factor of safety (FoS) have
a significant economic impact, as they relate to the size of the
opening and the extraction ratio. Pillar FoS is defined as the ulti-
mate strength of the pillar divided by the stress acting on the pillar.
The most generally accepted techniques for estimating pillar
strength use empirical formulae based on survey data from actual
mining conditions. Several different formulas for pillar strength
can be found in the literature [1–4].

In contrast to pillar strength, little effort went into investigation
of loading environment [5]. For initial analysis of the stresses act-
ing on the pillar, the tributary area method is most commonly used
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[6]. This method simply assumes that the vertical gravitational
pressure acting on half the span of the mine is imposed on the pil-
lar. The pillar and mine act together to resist gravitational defor-
mations. This interaction is not directly considered by the
tributary area method. Moreover, due to the heterogeneous nature
of the rock mass, the mine and pillar strength depends on both the
intact rock properties and the shear strength of the natural discon-
tinuities. The concentration of stresses directed from the mine to
the pillar and the transient stresses induced upon the pillar
through the excavation process likely cause the pillar strength to
degrade due to progressive brittle damage in the form of crack
growth and shearing of pre-existing joints. In turn, the weakening
of the pillar influences the distribution of loads between the pillar
and mine.

Oravecz developed an elastic analogue for determining stresses
and displacements for pillars in coal mines, assuming that those
were dictated by the compressibility of the seam [7]. The spring-
analogue presented in this paper examines the mine-pillar interac-
tion in terms of the deformation of the mine-pillar system and is
not limited to the case of stratigraphic units and seams.

Esterhuizen et al. used the concept of ground response curves
for presenting mine-pillar interaction [8]. In their work they used
numerical analyses with the code FLAC (Itasca, [9]) to obtain pillar
deformation results. The results were plotted in the form of mine-
pillar interaction curves where the initial vertical pressure acting
on the pillar was used as a reference point for plotting the vertical
axis. In a similar context, Barczak et al. used numerical modeling to
for ground response curves specifically developed for longwall tail-
gate standing support design [10].

The approach proposed in this paper is to develop simple equa-
tions that would obviate the need to build a full numerical model
for pillar analysis. Elastic conditions are assumed, as it is argued
that for elastic-brittle rock masses, where the peak elastic stress
is followed by a rapid drop in material strength, an elastic analysis
would be sufficient for estimating the ultimate pillar strength and
pillar FoS. However, for deformable plastic rock mass the yielding
will likely initiate simultaneously in both the mine and pillar,
therefore it would be recommended to conduct fully elasto-
plastic numerical analyses in order to obtain the characteristic
curves for the mine and pillar loading system rather than to rely
solely on the equations proposed in this paper.

2.1. Pillar spring analogue derivation

Given a rectangular excavation, (see Fig. 1), at a depth D below
ground surface, and a rock material with unit weight, the vertical
pre-mining pressure acting on the elevation of the excavated roof is:

PO ¼ c� D ð1Þ
The deformation of the mine-pillar system is affected by both

the stiffness of the pillar, KP, and the stiffness of the mine, KM. In

order to simplify the mine-pillar system to a spring system with
a single degree of freedom, the distributed pressure PO is substi-
tuted by an equivalent force, FEQ. This is found by calculating the
force that would yield the same maximum displacement DM at
the center of the roof of the mine system alone (i.e. assuming the
absence of the pillar), as shown in Fig. 2.

For the given system, and assuming at this stage no high hori-
zontal stresses are present (i.e. the horizontal-to-vertical stress
ratio, k, is less than one), the equivalent force FEQ can be approxi-
mated as:

FEQ ¼ 0:24L� PO ð2Þ
where L is the mine span. The mine span is equal to the width of the
pillar plus the width of two rooms, and can be related to the extrac-
tion ratio, which is the ratio of extracted material to the total
dimensions of the pillar and rooms.

The mine displacements are dependent and linearly propor-
tional to the length of the unsupported span, the vertical pressure
and the rock mass Young’s modulus. The displacement occurs at
both the roof and floor level of the mine; hence the mine conver-
gence is twice the displacement DM. Based on numerical modeling
using the FEM code RS2 [11], and assuming a constant stress field,
the mine displacement DM is:

DM ¼ L� PO

EM
ð3Þ

where L is the mine span and EM is the rock mass Young’s modulus
of the mine. Note that the maximum displacement of the mine roof
and floor DM is calculated based on elastic analysis. The mine stiff-
ness KM is therefore:

KM ¼ FEQ

DM
¼ 0:24EM ð4Þ

Eq. (4) shows that the mine stiffness is not dependent on the
excavation geometry and is approximately one fourth of the rock
mass deformation modulus.

The stiffness of the pillar KP is a function of the rock mass
Young’s modulus of the pillar, EP, the pillar height H and the pillar’s
cross section. In a plain strain analysis the pillar cross section is
affected only by the pillar width, W. According to elastic theory,
the stiffness of the pillar is:

KP ¼ EP
W
H

ð5Þ

The idealization of the mine-pillar system to a discretized
spring system is illustrated in Fig. 3. Initially, the system is con-
verted into a system with two degrees of freedom, but owing to
symmetry the problem can be further simplified and treated as a
SDOF problem. Hence, f or the stiffness of the single spring the pil-
lar height is taken as half the original height, and the stiffness is
therefore doubled. As the mine-pillar system is represented by
two parallel springs, the final deformation of the pillar is affected
by the combined stiffness of the mine and the pillar, thus:

DP ¼ FEQ=ðKM þ 2KPÞ ¼ 0:24L� PO 0:24EM þ 2EP
W
H

� ��
ð6Þ

Fig. 1. Rectangular excavation with pillar at its center. Fig. 2. Equivalent force FEQ.
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