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a b s t r a c t

The equation used to model the unidirectional flow of methane gas in coal seams is usually formulated as
a nonlinear partial differential equation, which needs to be solved numerically with a computer program.
Nevertheless, for people without access to the computer program, the conventional numerical method
may be inconvenient. Thus, the objective here is to seek some method simpler than the conventional
one for solving the flow problem. A commonly used model of the unidirectional methane gas flow is con-
sidered, where the methane adsorption is described by the Langmuir isotherm and the free gas is treated
as real gas. By introducing the similarity solution, a simple method for solving the flow model is pro-
posed, which can be done on a hand calculator. It is shown by two examples that the gas pressure profile
obtained by the proposed method agrees well with the direct numerical solution of the flow model.
� 2017 Published by Elsevier B.V. on behalf of China University of Mining & Technology. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

As coal is porous in nature, significant amounts of methane can
be retained in coal bed, and coalbed methane (CBM) is both a
potentially valuable energy resource and a hazard in active coal
mines [1–3]. Understanding the methane gas migration in coal
seams is essential for both CBM recovering and coal mine gas con-
trol. But, the CBM flow equation is usually formulated as a nonlin-
ear partial differential equation (PDE), which can hardly be solved
by purely analytical techniques [4,5].

The unidirectional flow is one of the three basic patterns of
methane gas migration in coal seams, while the other two are
radial flow and spherical flow [6]. The unidirectional flow of
methane gas is a kind of one-dimensional transient flow. It refers
to the situation where the methane gas migrates towards a coal
face, of which the height is equal to the thickness of the coal seam,
as shown in Fig. 1.

For one-dimensional transient gas flow (without adsorption and
desorption) in porous media, a traveling wave solution has been
present by Hayek [7]. Because the CBM flow is usually accompa-
nied by methane desorption [8,9], and the coal methane content
is nonlinearly dependent on the pore gas pressure [10,11], the

problem of CBM flow is more complex, and we have to solve it
numerically using a computer program.

As is well known, there are many parameters controlling the
methane gas flow in coal seams, such as gas pressure, coal seam
permeability, adsorption coefficients, etc. While trying to investi-
gate the effects of these parameters on the flow process, one needs
to solve the flow model many times for different values of the
parameters, and the computational cost rises rapidly as the param-
eter number increases. Moreover, and importantly, the conven-
tional numerical analysis may be inconvenient for those, such as
field engineers, field technicians, and so on, who might not have
access to the computer program. Thus, the objective of this study
is to seek a method for solving the flow model, which is simpler
than the conventional numerical analysis, and is accurate enough,
and can be done even without a computer. Of course, such a
method can also be easily programmed to run efficiently on a
computer.

2. Basic equation

While the methane adsorption is described by the Langmuir
isotherm [12–14], and the free gas is treated as real gas [4,15], a
commonly used model of the unidirectional methane gas flow
can be written as [10,16]:
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where P is the square of the coal seam gas pressure, MPa2, and P = P
(x, t) = p2(x, t); p is the pore gas pressure, MPa; x is the spatial coor-
dinate, m; t is the time coordinate, s; M ¼ k=ðabÞ, m2/(MPa s); k is
the permeability coefficient of the coal seam, m2/(MPa2 s); a is the
maximum adsorbed gas content, m3/m3; b is the equilibrium con-
stant, MPa�1; U ¼ /=ðabÞ, MPa; / is the porosity; pn is the normal
gas pressure, here taking pn � 0.1 MPa.

If the free gas is ignored, Eq. (1) reduces to:
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For both Eqs. (1) and (2), the initial and boundary conditions are
as follows:

Pðx;0Þ ¼ P0 ¼ p2
0

Pð0; tÞ ¼ P1 ¼ p2
n

Pð1; tÞ ¼ P0 ¼ p2
0

8><
>: ð3Þ

where P0 is the square of the original gas pressure in the coal seam,
MPa2; p0 is the original gas pressure, MPa; P1 is the square of the gas
pressure at the coal face, and here we assume P1 = p2

n = 0.01 MPa2.
Obviously, Eqs. (1) and (2) with their initial and boundary con-

ditions in Eq. (3) form two initial and boundary value problems
(IBVP) of nonlinear PDE, which need to be solved numerically by
using a computer program.

3. A simple method for solving the flow model

3.1. Similarity transformations

By introducing suitable similarity transformations, some PDEs
can be reduced into ordinary differential equations (ODE) and the
solutions of the ODEs are called the similarity solutions of the PDEs
[17–21]. If the similarity solutions are known in advance, the solu-
tions of the original PDEs can be easily obtained.

It is not too difficult to prove that both Eqs. (1) and (2) can be
transformed into ODEs by introducing a similarity variable like
x=

ffiffi
t

p
. In order to reduce the number of the model parameters,

and to make the initial and boundary conditions simpler, we define
two similarity variables as follows:

g ¼ P=P0

n ¼ x
ffiffiffiffiffiffiffiffiffiffiffi
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where g and n are similarity variables, dimensionless.
Substituting the similarity variables into Eqs. (1)–(3) separately

leads to
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where g0 ¼ dg
dn, g

00 ¼ d2g
dn2

, r ¼ b
ffiffiffiffiffi
P0

p ¼ bp0, and g0 ¼ P1=P0 2 (0, 1).

So, the original two IBVPs have been transformed into two
boundary value problems (BVP). Eqs. (5) and (6) are the so called
similarity equations of Eqs. (1) and (2), separately. Obviously, the
similarity equation is easier to be solved than its original equation.
Moreover, it is worth mentioning that there are only two model
parameters, i.e., r and g0, left in Eq. (6) and its boundary condi-
tions. That means the solving of Eq. (6) only needs to be repeated
for every (r, g0). So, it will be not too difficult to tabulate or graph
the solutions of Eq. (6) in advance for further use to solve Eq. (2).

However, there are three model parameters, i.e., U, r and g0,
left in Eq. (5) and its boundary conditions. So it will be difficult
to tabulate or graph the solutions of Eq. (5) systematically in
advance.

3.2. Proposed methods

Because the free gas is usually less than the adsorbed gas, Eq. (2)
can be regarded as a rough approximation to Eq. (1), and Eq. (6) a
rough approximation to Eq. (5). As the basis of following consider-
ation, Eq. (6) is solved using the shooting method [22], and its
numerical solution sets for a range of values of r and g0 are
obtained as shown in Fig. 2. Here, only the solution sets for the
cases of r = 0.56, 1.8 and 5.8 are present because of the space
restrictions.

Without loss of generality, suppose we are looking for the solu-
tion of Eq. (5) at n = nk, with r and g0 known. Here, nk is a certain
value of n, which corresponds to some certain point of the space-
time coordinate of (x, t). The basic ideas of the proposed method
are as follows.

Firstly, we get the solution of Eq. (6) corresponding to the
known r and g0 at n = nk from the solution sets as shown in
Fig. 2, and denote this solution as gf,k.

Secondly, we set

B ¼ 1þ 10U 1þ r
ffiffiffiffiffiffiffi
gf ;k

p� �2
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Thirdly, we rewrite Eq. (5) approximately as
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where ĝ is an approximation of g.
Fourthly, we set

n̂ ¼
ffiffiffi
B

p
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and substitute it into Eq. (9), and get
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The boundary conditions for Eq. (11) is

ĝð0Þ ¼ g0

ĝð1Þ ¼ 1

�
ð12Þ

Obviously, Eq. (11) is identical in form to Eq. (6), and the bound-
ary conditions in Eq. (12) are also identical to that in Eq. (7). So the
solution of Eq. (11) can also be determined from the solution sets
of Eq. (6) as shown in Fig. 2. We can take the solution of Eq. (11)

Fig. 1. Unidirectional methane gas flow in coal seam.
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