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a b s t r a c t 

This study aims to initiate research for the invention of methods appropriate for characterisation of fibre- 

reinforced materials that exhibit polar material behaviour due to fibre bending resistance. It thus focuses 

interest in the small strain regime, where there are examples of particular deformations for which non- 

polar linear elasticity fails to distinguish clearly the nature of a fibrous composite or even to account 

for the presence of fibres. Particular attention is accordingly given to the solution of the polar material 

version of the pure bending problem of transverse isotropic or special orthotropic plates with embed- 

ded fibres resistant in bending. It is seen that pure bending deformation enables polar fibre-reinforced 

materials to generate constant couple stress-field which, in turn, endorses uniqueness of the solution 

of the corresponding boundary value problem. In this context, by appropriately extending the validity 

of Clapeyron’s theorem within the regime of polar linear elasticity for fibre-reinforced materials, it is 

shown that the solution of well-posed linear elasticity boundary value problems that generate a constant 

couple-stress field is unique. The well-known uniqueness of solution of conventional, non-polar linear 

elasticity boundary value problems is, in fact, a particular case in which the generated constant value of 

the couple-stress field is zero. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

When pioneered the non-linear theory of fibre-reinforced ma- 

terials, Rivlin and his, then, student Adkins assumed deliberately, 

perhaps for simplicity, that fibres embedded in an isotropic ma- 

terial behave like perfectly flexible cords ( Adkins 1951 , chps. VIII 

and X; Adkins and Rivlin, 1955 ). Their consciousness in making this 

assumption, which underpinned relevant theoretical developments 

for long time afterwards (e.g., Pipkin and Rogers, 1971; Spencer, 

1972, 1984 ), becomes clear at the beginning of the Introduction of 

Rivlin (1955 ). 

This assumption is a good approximation in many cases of in- 

terest but not applicable when fibres resist bending. In their en- 

deavour to fill in the implied theoretical gap and, hence, complete 

the earlier theoretical framework, Spencer and Soldatos (2007) de- 

veloped a non-linear, second gradient, polar hyperelasticity theory 

that accounts for the bending stiffness of a single family of unidi- 

rectional fibres embedded in a relevant composite solid (see also 

Spencer, 2009 ). Moreover, Spencer and Soldatos (2007) presented 

also a corresponding linearized version of that theory, which is ac- 
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cordingly perceived as a polar material completion of conventional 

linear transverse isotropic elasticity; at least as far as transverse 

isotropy is due to presence of a single family of unidirectional fi- 

bres that resist bending. 

It is recalled in this connection that linear anisotropic elastic- 

ity has been used extensively in modelling the behaviour of fibre- 

reinforced solids and structures subjected to small strain after the 

first half of the 20th century. Nevertheless, interest in and devel- 

opment of linear anisotropic elasticity started much earlier, in the 

first half of the 19th century (e.g., Love, 1944; Sokolnikoff, 1983 ). 

These facts and observations cannot easily dispute a thought that 

the aforementioned “perfectly flexible fibres” concept pre-existed 

the early non-linear elasticity models presented by Rivlin and 

Adkins; see also ( Adkins, 1956 ). 

Most recently, Soldatos (2014, 2015) revisited the polar material 

version of the linearized elasticity theory presented in Spencer and 

Soldatos (2007 ) and extended it in a manner that accounts for ma- 

terial anisotropy that ( i ) is due to presence of two families of uni- 

directional fibres that resist bending, and ( ii ) may be as advanced 

as its counterpart met in non-polar locally monoclinic materials. In 

cases that fibres are perfectly flexible, this new linear anisotropic 

elasticity development ( Soldatos, 2014, 2015 ) reduces naturally to 

its conventional counterpart (e.g., Love, 1944; Sokolnikoff, 1983; 

Ting, 1996; Jones, 1998 ). However, when fibre bending stiffness is 
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accounted for, the theory faces new challenges which are mainly 

due to the fact that ( i ) its governing equations are not anymore 

elliptic, and ( ii ) it involves a number of additional elastic moduli 

whose role is as yet unclear. 

In conventional non-polar elasticity, loss of ellipticity of the 

governing equations may be observed only in the large, non- 

linear deformation regime, where it is associated with forma- 

tion of several different modes of possible material instability. 

Those instability modes manifest themselves as multiple solutions 

of the relevant non-linear governing equations. That “loss of el- 

lipticity” concept was first investigated by Knowles and Stern- 

berg (1975) within the framework of non-polar isotropic hyper- 

elasticity, while corresponding fibre-reinforced material studies 

emerged in Triantafyllidis and Abeyarante (1983 ). Research in this 

subject is still advancing (e.g., Dorfmann et al., 2010; El Hamdaoui 

and Merodio 2015 ), but the implied loss of ellipticity concept is al- 

ready considered the source of different failure modes met in fibre- 

reinforced material mechanics, including fibre-kinking, fibre de- 

bonding and fibre splitting (e.g., Merodio and Ogden, 2002; 2003 ). 

In contrast, non-polar linear elasticity guarantees the ellip- 

tic nature of its governing equations and, therefore, the unique- 

ness of the solution of corresponding well-posed boundary value 

problems; extensive relevant references as well as additional re- 

marks and accounts maybe found, for instance, in Love (1944 ) and 

Sokolnikoff (1983 ). In this connection, the fact that the govern- 

ing equations of the polar linear elasticity presented in Soldatos 

(2014,2015 ) are not elliptic raises, natural questions and doubts re- 

garding potential uniqueness of the solution of corresponding polar 

material boundary value problems. Nevertheless, some progress in 

this direction is still possible, and this is reported in the present 

study. 

On the other hand, the specific role and significance of each 

of the elastic moduli met in non-polar isotropic and/or anisotropic 

linear elasticity has been made clear long ago. This has been 

achieved by suitable exploitation of the solution of certain fun- 

damental non-polar elasticity boundary value problems, such as 

the unidirectional compression/extension of rods, multi-directional 

compression/extension, and/or shear loadings of plates, etc. (e.g., 

Love, 1944; Sokolnikoff, 1983; Jones, 1998 ). However, the role of 

the additional elastic moduli entering the polar linear elasticity 

theory presented in Soldatos (2014, 2015) needs still to be investi- 

gated and become better understood. An initial effort in that direc- 

tion is accordingly also presented in this paper, by revisiting and 

studying in detail the pure bending problem of a fibre-reinforced 

plate in the light of polar linear elasticity equations stemming from 

Soldatos (2014, 2015) . 

Under these considerations, Section 2 briefs the basic theoreti- 

cal background required for this study, including equilibrium equa- 

tions, basic kinematic and relevant constitutive equations of po- 

lar linear anisotropic elasticity. Section 3 introduces next the con- 

cepts of the displacement-gradient, the rotation and the spin en- 

ergy functions. Appropriate use of these concepts enable after- 

wards Section 4 to develop an interesting polar material extension 

of Clapeyron’s Theorem and, hence, to further prove uniqueness 

of the solution of a well-posed relevant boundary value problem 

when the couple-stress tensor is constant. 

The latter condition guarantees uniqueness of the solution and 

is used afterwards in the applications considered in Sections 5 and 

6 . These present a number of useful solutions to different versions 

of the problem of pure, plane strain bending of an infinitely long 

fibre-reinforced plate made of perfectly flexible fibres and fibres 

resistant in bending, respectively. Either of Sections 5 and 6 con- 

siders material constitution which is consistent with the mate- 

rial symmetries of both transverse isotropy and special orthotropy. 

Through comparison of corresponding theoretical results, an initial 

attempt is thus made towards clarification of the role of the fi- 

bre bending stiffnesses met in the polar material version of linear 

anisotropic elasticity. Basic conclusions as well as relevant thoughts 

for possible continuation/extension of this study are finally sum- 

marised in Section 7 . 

2. Basic theory and equations 

Full derivation details of the equations of polar linear elastic- 

ity of fibre-reinforced materials may be found in Soldatos (2014, 

2015) . This Section quotes briefly only a set of equations required 

for the purposes of the present study. Presentation of that set of 

equations within the framework of a right-handed Cartesian co- 

ordinate system O x i begins with the introduction of a stress tenor, 

σ , and a couple-stress tensor, m , which are related as follows: 

σi j = σ( i j ) + σ[ i j ] , σ[ i j ] = 

1 

2 

ε k ji m �k,� . (2.1) 

Here σ ( ij ) and σ [ ij ] are the components of the symmetric and 

the antisymmetric part of the stress-tensor, respectively, and ε is 

the three-dimensional alternating tensor. Subscripts are generally 

assumed to take values 1, 2 and 3. Moreover, the summation nota- 

tion applies on repeated indices and, in the usual manner a comma 

between indices denotes partial differentiation. 

2.1. Equilibrium and kinematic considerations 

By considering for simplicity that body forces and body couples 

are absent, a note is initially made of the fact that (2.1b) is essen- 

tially an equation that guarantees couple-stress equilibrium in the 

continuum. Then stress equilibrium considerations yield 

σi j,i = σ( i j ) ,i + 

1 

2 

ε k ji m̄ �k,�i = 0 , (2.2) 

where 

m̄ 

�k = m 

�k −
1 

3 

m rr δ�k (2.3) 

is the deviatoric part of the couple-stress tensor, and the appearing 

Kronecker’s delta represents the components of the unit matrix, I . 

Moreover, the components of the traction and the couple-traction 

vectors acting on any surface S of the fibrous composite are respec- 

tively given as follows: 

T (n ) 
i 

= σ ji n j , L 
(n ) 
i 

= m̄ ji n j . (2.4) 

where n denotes the outward unit normal of S . 

It is pointed out with interest that when polar material be- 

haviour manifests itself through generation of a couple-stress field 

that is at most linear in the spatial co-ordinates, the stress equi- 

librium Eqs. (2.2) retain the form of their non-polar material coun- 

terpart. Moreover, in the particular case that polar material mani- 

festation is associated with generation of a constant couple-stress 

field, then the antisymmetric part of stress (2.1b) is zero and, as a 

result, the stress field is still symmetric. 

In accordance with conventional, non-polar elasticity kinemat- 

ics, consider next the displacement vector u and, in the usual man- 

ner, define the linear elasticity strain and rotation tensors, 

e i j = 

1 

2 

(
u i, j + u j,i 

)
, ω i j = 

1 

2 

(
u i, j − u j,i 

)
. (2.5) 

as the symmetric and the antisymmetric part of the displacement 

gradient, respectively. Also, recall that the rotation tensor and the 

spin vector, �, are related as follows: 

�i = 

1 

2 

ε i jk ω k j , ω k j = ε i jk �i . (2.6) 

Assume next that the material of interest contains at most two 

families of embedded fibres and denote with a 

( n ) the unit vector 
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