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a b s t r a c t 

The paper is devoted to the homogenization of porous piezoelectric materials saturated by electrically 

inert fluid. The solid part of a representative volume element consists of the piezoelectric skeleton with 

embedded conductors. The pore fluid in the periodic structure can constitute a single connected domain, 

or an array of inclusions. Also the conducting parts are represented by several mutually separated con- 

nected domains, or by inclusions. Two of four possible arrangements are considered for upscaling by the 

homogenization method. The macroscopic model of the first type involves coefficients responsible for in- 

teractions between the electric field and the pore pressure, or the pore volume. For the second type, the 

electrodes can be used for controlling the electric field at the pore level, so that the deformation and 

the pore volume can be influenced locally. Effective constitutive coefficients are computed using charac- 

teristic responses of the microstructure. The two-scale modelling procedure is implemented numerically 

using the finite element method. The macroscopic strain and electric fields are used to reconstruct the 

corresponding local responses at the pore level. For validation of the models, these are compared with 

results obtained by direct numerical simulations of the heterogeneous structure; a good agreement is 

demonstrated, showing relevance of the two-scale numerical modelling approach. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

The piezoelectric effects which couple the mechanical deforma- 

tion and the electrical field have been studied since the middle 

of eighteen century, however the piezoelectric materials became 

widespread during the World War I due to their use in resonators 

for detecting the acoustic sources produced by submarines using 

echolocation. After the World War II, apart of quartz, new types 

of the piezoelectric materials, such as barium titanite ( BaTiO 3 ) 

and other synthesizes piezoceramic materials were developed with 

their dielectric constants much higher than those found in natural 

piezoelectric materials, such as quartz and some other minerals, or 

bone. Since then, the piezoelectric materials have found vast ap- 

plications in electronics, mechatronics, and micro-system technol- 

ogy, being extensively used in the design of transducers, sensors 

and energy harvesters. Smart structures, such as microelectrome- 

chanical systems (MEMS) based on these materials allow for intel- 

ligent self-monitoring and self-control capabilities. Nowadays the 

piezoelectric sensor-actuator systems can be distributed continu- 

ously, being attached to the surface of other structural parts. Such 
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an arrangement can be used e.g. in the aerospace industry to con- 

trol vibrations, or acoustic radiation of thin flexible structures. 

For modelling periodically heterogeneous media with piezo- 

electric components, classical upscaling techniques has been em- 

ployed. Besides the micromechanics approaches including the 

Mori–Tanaka and self consistent upscaling schemes, ( Ayuso et al., 

2017 ), the classical periodic homogenization based on the for- 

mal two-scale asymptotic expansion method ( Sanchez-Palencia, 

1980; Cioranescu and Donato, 1999 ), or on the two-scale con- 

vergence ( Allaire, 1992 ) and the periodic unfolding method 

( Cioranescu et al., 2008 ) has been used. Recently, the homogeniza- 

tion of thermoelectric and thermo-diffusive materials was treated 

in Fantoni et al. (2017) and Bacigalupo et al. (2016) . Homoge- 

nization of the periodic composites consisting of piezoelectric ma- 

trix and elastic anisotropic inclusions accounting for bone cells 

was described in Miara et al. (2005) ; therein it has been sug- 

gested to exploit the piezoelectric effect in the design of a new 

type of bio-materials which should assist in bone healing and 

regeneration. Such possible application for piezoelectric materi- 

als in biomedical engineering is motivated by the electrochemi- 

cal processes in biological tissues, which are coupled tightly with 

periodic mechanical loading assisted by the electric field. Perfor- 

mance of the tissue regeneration and remodelling may be en- 

hanced by activated bio-piezo porous implants which can acceler- 

ate these processes undergoing at the microscopic level and related 
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to the electro-mechanical transduction, cf. Sikavitsas et al. (2001) ; 

Wiesmann et al. (2001) . The Suquet method of homogenization 

has been used to obtain analytic models of particulate and fibrous 

piezoelectric composites ( Iyer and Venkatesh, 2014 ). Apart of the 

homogenization of heterogeneous piezoelectric media, an asymp- 

totic analysis has been applied to derive higher order models of 

piezoelectric rods and beams, starting from the 3D piezoelectricity 

problem ( Viaño et al., 2016 ). 

In Rohan and Miara (2006) , the shape sensitivity formulae were 

derived for a class of 2D microstructures comprising one piezo- 

electric and one arbitrary elastic material, whereby the shape of 

the interface between the two materials was parameterized. As a 

challenge for the material design, the numerical tests have shown 

how a suitable geometry of the interface can amplify some of the 

homogenized coefficients, namely the third-order tensors associ- 

ated with the electromechanical coupling. Sensitivity of the effec- 

tive medium properties to the microstructure properties were also 

reported in Koutsawa et al. (2010) . 

Besides the periodic homogenization, in Ayuso et al. (2017) , the 

Mori–Tanaka and the self-consistent schemes were used for up- 

scaling the drained porous piezoelectric materials. Concerning the 

fluid saturated porous piezoelectric media, the asymptotic method 

has been applied in Telega and Wojnar (20 0 0) to derive macro- 

scopic constitutive laws accounting for the fluid-structure interac- 

tion at the pore level, whereby a simplified model of electrolytes 

was considered. In the context of the bone tissue biomechanics, 

the macroscopic influence of piezoelectric effects observable in 

dried bone was studied in Lemaire et al. (2011) using the homoge- 

nization approach. 

Propagation of electroacoustic waves in an reinforced piezoelec- 

tric medium was treated in Levin et al. (2002) . The low frequency 

acoustic wave propagation in the porous piezoelectric materials 

has been subject of several works ( Vashishth and Gupta, 2009; 

Sharma, 2010; Vashishth and Gupta, 2011; Besombes et al., 0 0 0 0 ). 

In these papers, the modelling is based on the Biot theory of 

porous media elaborated within the phenomenological approach, 

therefore, influences of specific microstructures on the wave dis- 

persion have not been studied yet. 

This paper is focused on the derivation of the effective material 

coefficients of the fluid-saturated porous media with the piezoelec- 

tric skeleton using the homogenization framework. A related topic 

was treated recently in Iyer and Venkatesh (2014) , where a spe- 

cial type of piezoelectric anisotropic composite materials was stud- 

ied using numerical and analytical methods. Although the poros- 

ity influence was examined and the figures of merit related to 

the hydrostatic strain coefficient were also investigated, we pur- 

sue another homogenization approach which is based on the pe- 

riodic homogenization of the static fluid-structure interaction, as 

reported in Rohan et al. (2015) in the context of the hierarchical 

porous poroelastic media, cf. Rohan and Lukeš (2015) . We assume 

a quasistatic loading, such that inertia and viscosity related effects 

can be neglected. As the consequence, in any connected porosity, a 

unique pressure is established which satisfies the equilibrium. Us- 

ing the homogenization of the fluid-structure interaction problem 

at the microscopic scale, we obtain macroscopic models of the up- 

scaled piezo-poroelastic medium for different periodic microstruc- 

tures; one connected porosity, or an array of fluid filled inclusions 

is combined with piezoelectric skeleton which can contain mutu- 

ally separated conductors (metallic parts). We consider two differ- 

ent situations: (1) the conductors are distributed as a periodic ar- 

rays of mutually separated inclusions, or (2) the conducting pars 

constitute two or more electrodes such that each of these elec- 

trodes presents a connected porous structure. In the second case, 

different electric potential is prescribed to different electrodes, so 

that electric fields induced in the microstructure can be controlled. 

The paper is organized as follows. In Section 2 , different micro- 

scopic configurations of the periodic porous piezoelectric medium 

are defined and the model equations are introduced, yielding the 

weak formulation. The homogenization of the static fluid-structure 

interaction is reported in Sections 3 and 4 , for the two above men- 

tioned designs of the conducting parts. In both these sections, the 

local problems for the characteristic responses of the representa- 

tive period cell are derived and the homogenized effective material 

coefficients are obtained. These are involved in the macroscopic 

equations governing behaviour of the upscaled poro-piezoelectric 

medium. Using the characteristic responses and the macroscopic 

fields, the displacement, pressure and electric fields can be re- 

constructed at the microscopic level, as reported in Section 6 . Fi- 

nally, in Section 7 , we present numerical illustration of the derived 

macroscopic models. For validation of these models, direct numer- 

ical simulation of the heterogeneous media are compared with the 

responses computed using the homogenized problems. Some tech- 

nical supporting material is explained in the Appendix. 

Some basic notations. In the paper, the mathematical models are 

formulated in a Cartesian framework of reference R ( O ; e 1 , e 2 , e 3 ) 

where O is the origin of the space and ( e 1 , e 2 , e 3 ) is a orthonor- 

mal basis for this space. The coordinates of a point M are specified 

by x = (x 1 , x 2 , x 3 ) in R . The boldface notation for vectors, a = (a i ) , 

and for tensors, b = (b i j ) , is used. The following special notation 

is used for the electric field 

�
 E , and the electric displacement vec- 

tor � D . Furthermore, a special notation is introduced for the 3rd or- 

der tensors associated with piezoelectric coupling, G 

H , g . The gra- 

dient and divergence operators are respectively denoted by ∇ and 

∇ · . When these operators have a subscript which is space vari- 

able, it is for indicating that the operator acts relatively at this 

space variable, for instance ∇ x = (∂ x 
i 
) . The small strain tensor is 

denoted by e ( u 

ε ) = (∇ u 

ε + (∇ u 

ε ) T ) / 2 . The symbol dot ‘ · ’ denotes 

the scalar product between two vectors and the symbol colon 

‘:’ stands for scalar (inner) product of two second-order tensors. 

Throughout the paper, x denotes the global (“macroscopic”) coor- 

dinates, while the “local” coordinates y describe positions within 

the representative unit cell Y ⊂ R 

3 where R is the set of real num- 

bers. By dV (or dV x ) and dV y we denote the elementary volume 

elements associated with coordinates x and y , respectively, while 

dV xy is the elementary volume in a cross-product domain �× Y . 

Accordingly, elementary surfaces are designated by dS, dS x and dS y . 

By ∼∫ Y D = | Y | −1 
∫ 

D with Y d ⊂ Y we denote the local average. The 

Lebesgue spaces of 2nd-power integrable functions on a domain 

D is denoted by L 2 ( D ), the Sobolev space W 

1,2 ( D ) of the square in- 

tegrable vector-valued functions on D including the 1st order gen- 

eralized derivative, is abbreviated by H 

1 ( D ). The unit normal vector 

outward to domain D s is denoted by n 

[ s ] . 

2. Microscopic model of porous piezoelectric media 

There are typically two characteristic lengths: � describes the 

heterogeneity size and L is the relevant macroscopic size. The ra- 

tion ε = �/L is called the scale parameter. As usually, we consider 

material properties of the heterogeneous medium oscillating with 

period � relative to the spacial position. The asymptotic method of 

homogenization is based on the asymptotic analysis of the mathe- 

matical model for ε → 0. 

2.1. Periodic microstructure 

The medium is generated by copies of the representative vol- 

ume element (RVE) Z ε ⊂ R 

3 as a periodic lattice, so that εa k 
is the lattice period in the k -the coordinate direction. For the 

“real size” RVE, we introduce its rescaled copy Y = ε −1 Z ε which 

is called the rescaled elementary periodic cell Y defined by 
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