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a b s t r a c t 

Symmetric positive definite left or right stretch tensors are decomposed multiplicatively into Eulerian 

or Lagrangean triple tensor products of symmetrizing rotations in the middle between two symmetric 

positive definite partial stretches. The proper orthogonal rotation tensors in the middle are determined 

from the symmetry conditions of the whole triple tensor products. The substitutions of the symmetrizing 

rotation tensors yield two commutative-symmetrical partial-stretch tensor products, which are (isotropic 

tensor) functions of the partial-stretch tensors of either proper Eulerian type defined with respect to a 

present configuration or proper Lagrangean type defined with respect to a reference configuration and 

which are equal to the symmetric total stretch tensors. Commutative-symmetrical partial-stretch tensor 

products do not rely on intermediate (stress-free) configurations. The eigenbase vector orientations of 

their proper Eulerian or proper Lagrangean multiplicative-elastic stretch tensors are well-defined, which 

is essential in order to model constitutive equations properly. Finite material orthotropy can be mod- 

eled simultaneously for both constituents and without the interference of their deformation-induced 

anisotropies when the partial-stretch tensors of the Lagrangean commutative-symmetrical products are 

defined with respect to the same reference configuration of orthotropy. The commutative-symmetrical 

partial-stretch tensor products are applicable to the constitutive modeling of finite anisotropy, and they 

constitute a novel approach to the kinematics of multiplicatively coupled total and partial stretch tensors. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

The multiplicative split of the deformation gradient F accord- 

ing to Bilby et al. (1957) , Kröner (1960) , Lee and Liu (1967) , 

Lee (1969) and others into (say) the elastic and plastic deformation 

factors { e F̄ , p F̄ } is linked to the notion of intermediate configura- 

tions which constrain the elastic deformation factors e F̄ to stress- 

free states and which differ from the present configuration κ or 

the reference configuration κ0 of properly defined tensors of Eule- 

rian or Lagrangean type. For non-symmetric plastic flow rules, the 

plastic deformation factor p F̄ is defined by the evolution equation 

p 
·
F̄ = 

p �̄ . p F̄ (1) 

with nine internal degrees of freedom (given by the nine compo- 

nents p �̄ i j of the non-symmetric plastic flow tensor p �̄ ). When the 

deformation gradient F and its plastic deformation factor p F̄ are 

known, the multiplicative Bilby–Kröner–Lee form 

F = 

e F̄ . p F̄ (2) 
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unambiguously defines the elastic deformation by 

e F̄ = F . p F̄ 
−1 

. (3) 

The question arises: why e F̄ . p F̄ � = 

p F̄ . e F̄ and not p F̄ . e F̄ , which would 

result in another (rotated) definition of the elastic deformation 

(factor tensor)? From the elastic deformation definition (3) , the 

symmetric proper Eulerian left multiplicative-elastic deformation 

tensor 

e b̄ = 

e F̄ . e F̄ 
T = F . p C 

−1 
. F T = R . (U . p C 

−1 
. U ) ︸ ︷︷ ︸ 

e C 

. R 

T 

(4) 

and the symmetric pseudo Lagrangean right multiplicative-elastic 

deformation tensor 

e C̄ = 

e F̄ 
T 
. e F̄ = 

p F̄ 
−T 

. C . p F̄ 
−1 = 

p R̄ . ( p U 

−1 
. C . p U 

−1 
) ︸ ︷︷ ︸ ̂ 

e C 

. p R̄ 

T 

(5) 

follow straightforwardly with 

e b̄ = 

e b = ( e v) 2 , e C = ( e U ) 2 and 

p C = 

( p U ) 2 . The “bar ” shall distinguish deformation tensors of mul- 

tiplicative formulations for non-symmetric plastic flow rules 

(2) from commutative-symmetrical partial-stretch product tensors 

of Green and Naghdi (1965) formulations for symmetric plastic 
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flow rules 

e C = U . p C 

−1 
. U and 

e b = F . p C 

−1 
. F T = R . e C . R 

T (6) 

and also from the abbreviation ̂ 

e C = 

p U 

−1 
. C . p U 

−1 
. (7) 

Within a Green and Naghdi (1965) formulation for symmetric 

plastic flow rules 

p 
. 

C 

= 

p A = 

p A 

T 
(8) 

with six internal degrees of freedom (given by the six compo- 

nents p A i j = 

p A ji of the plastic flow tensor p A ), only the plastic right 

stretch tensor p U = 

√ 

p C is well defined from the flow rule’s ma- 

terially convected time integral but the plastic deformation factor 
p ˜ F = 

p ˜ R . p U is not—because its plastic rotation tensor p ˜ R (with three 

internal degrees of freedom) remains undetermined, cf. Casey and 

Naghdi (1980) . Different authors overcome this rotational indeter- 

mination through different arbitrary assumptions on internal rota- 

tions. 

In this work, a novel commutative-symmetrical partial-stretch 

tensor product is suggested which determines the three rotational 

degrees of freedom of a triple tensor product (consisting of a sym- 

metrizing rotation in the middle between two partial stretches) 

from the symmetry of the whole product; the corresponding sym- 

metric multiplicative-elastic deformation tensors e b and 

e C as 

functions of total and plastic stretches are given by (6) . The tensors 
e b and 

e C are compared to (4) and (5) or to multiplicative-elastic 

deformation tensors of the Lee (1969) or the Drucker (1985) mul- 

tiplicative model with arbitrary rotational constraints. It turns out 

that only the right multiplicative-elastic deformation tensors of 

the four multiplicative models differ with respect to the orienta- 

tion of their right eigenbase vectors; their eigenvalues and the left 

multiplicative-elastic deformation tensors (including the left eigen- 

base vectors) are identical. The multiplicative-elastic deformation 

tensors (6) may further be employed as tensor arguments for the 

definition of logarithmic strain tensors in order to generalize addi- 

tive to multiplicative logarithmic strain space formulations. 

2. Preliminaries and notation 

The deformation gradient 

F = ∂x / ∂X = 

ˆ U k ̂  e k � ˆ E k ︸ ︷︷ ︸ 
R 

= 

ˆ U k ̂  e k � ˆ e k ︸ ︷︷ ︸ 
v 

. R = R . ̂  E k �
ˆ E k ̂

 U k ︸ ︷︷ ︸ 
U 

, 
(9) 

defined as the partial derivative ∂ x / ∂ X of the vicinity d x of the 

present position vector x (within the present configuration κ) with 

respect to the vicinity d X of the reference position vector X (within 

the reference configuration κ0 ), reveals in its spectral representa- 

tion (9) the multiplicative decoupling—in line with the polar de- 

composition theorem ( Thomson and Tait, 1879; Richter, 1952 )—

into a proper orthogonal (orthonormal R 

−1 = R 

T and right-handed 

det (R ) = 1 ) material rotation tensor 

R = ˆ e k � ˆ E k (10) 

and into the symmetric positive definite left or right stretch ten- 

sors 

v T = v = 

ˆ U k ̂  e k �ˆ e k or U 

T = U = 

ˆ U k ̂
 E k �

ˆ E k . (11) 

The summation convention is adopted on multiple repeated in- 

dices 

ˆ U k ̂  e k � ˆ E k = 

ˆ U 1 ̂  e 1 � ˆ E 1 + 

ˆ U 2 ̂  e 2 � ˆ E 2 + 

ˆ U 3 ̂  e 3 � ˆ E 3 . (12) 

Throughout this work, eigenvalues ˆ U k and left ˆ e k or right ˆ E k eigen- 

base vectors are marked with a “hat ”. The eigenbase vectors ˆ e k 

and 

ˆ E k , which are defined by the normalized left and right eigen- 

vectors, are orthogonal and obey ˆ e i . ̂ e j = ̂

 E i . ̂  E j =δi j , where δij de- 

notes Kronecker’s delta, i.e. the E i �E j components of the second- 

order identity tensor I. The transpose, the inverse, the transposed 

inverse and the determinant of a second-order tensor A are A 

T , 

A 

−1 , A 

−T and det (A ) , respectively. The ‘ �’ denotes the dyadic prod- 

uct operator , and a dot ‘.’ a dot product operator (or single con- 

traction) a . b = a k b k = tr (a �b ), defined here by the trace of the a �b 

vector dyad. The positive definiteness ( ̂  U k > 0 ) of the deformation 

gradient F implies: det (F ) > 0 . The left and right stretch tensors 

(11) as well as the corresponding symmetric positive definite left 

[( Cauchy, 1827 ), p.62, Eqs. (10) and (11)] and right [( Green, 1839 ), 

pp.123–124] Cauchy–Green deformation tensors 

b T = b = F . F T = v 2 = 

(
ˆ U k 

)2 
ˆ e k � ˆ e k 

and C 

T = C = F T . F = U 

2 = 

(
ˆ U k 

)2 
ˆ E k �

ˆ E k (13) 

are, respectively, the material R -forward or R 

T -backward rotations 

b = R . C . R 

T , v = R . U . R 

T or C = R 

T . b . R , U = R 

T . v. R (14) 

of each other—as are, from equation (9) , the Eulerian or Lagrangean 

eigenbase vectors 

ˆ e k = R . ̂  E k = 

ˆ E k . R 

T or ˆ E k = R 

T . ̂ e k = ˆ e k . R , (15) 

i.e. the normalized and orthogonal left or right eigenvectors. The 

contractions within tensor products are always denoted with “dots ”

and the labels “e” or “p” of partial tensors are written as upper left 

indices in order to distinguish them better from transposes, trans- 

posed inverses or (isotropic tensor) power functions. Even if most 

of this work focuses on elasto-plasticity, its kinematic key elements 

remain valid for inelasticity in general (and the label “p ” for plastic 

may also be interpreted as inelastic ). Under superposed rigid body 

motions (tagged with a “+”) with a rotation Q (without “tilde ”) 

• the deformation gradient (9) and the material rotation tensor 

(10) are related by 

F + = Q . F and R + = Q . R (16) 

• proper Eulerian tensors (written in lowercase) with respect to 

the present configuration κ are altered and related by 

b + = Q . b . Q 

T , v + = Q . v. Q 

T (17) 

• proper Lagrangean tensors (written in uppercase) with respect to 

the reference configuration κ0 are invariant 

C + = C , U + = U (18) 

3. The multiplicative Bilby–Kröner–Lee form for symmetric 

plastic flow rules 

For symmetric plastic flow rules (8) , the multiplicative Bilby–

Kröner–Lee form 

F = 

e ˜ F . ( ̃  Q 

T . ̃  Q ) . p ˜ F = ( e ˜ F . ̃  Q 

T ) . ( ̃  Q . p ˜ F ) (19) 

is undetermined with respect to an internal rotation 

˜ Q —as are e ˜ F 

and 

p ˜ F . Marking indeterminable tensors with “tildes ” and applying 

the polar decompositions of the undetermined elastic and plastic 

deformation factors 

e ˜ F = 

e v . e ˜ R = 

e ˜ R . e ˜ U and 

p ˜ F = 

p ˜ v . p ˜ R = 

p ˜ R . p U (20) 

to the multiplicative Bilby–Kröner–Lee form (19) , reveals 

e ˜ F . ( ̃  Q 

T . ̃  Q ) ︸ ︷︷ ︸ 
I 

. p ˜ F = 

e v . e ˜ R ︸ ︷︷ ︸ 
e ˜ R . e ˜ U 

. ( ̃  Q 

T . ̃  Q ) . p ˜ R . p U ︸ ︷︷ ︸ 
p ˜ v . p ˜ R 

= 

e v . ( e ˜ R . ̃  Q 

T ) . ( ̃  Q . p ˜ R ) ︸ ︷︷ ︸ 
O 

. p U = 

e v . O . p U 

(21) 
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