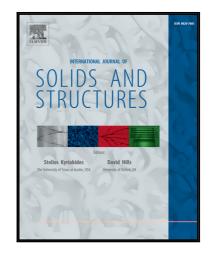
Accepted Manuscript

Mesoscale Investigation of Dynamic Fracture in Quartzite and Sandstone and Homogenization to Macroscale

Nathanaël Durr, Martin Sauer, Stefan Hiermaier

 PII:
 S0020-7683(18)30178-1

 DOI:
 10.1016/j.ijsolstr.2018.04.024


 Reference:
 SAS 9980

To appear in: International Journal of Solids and Structures

Received date:28 July 2017Revised date:16 February 2018Accepted date:27 April 2018

Please cite this article as: Nathanaël Durr, Martin Sauer, Stefan Hiermaier, Mesoscale Investigation of Dynamic Fracture in Quartzite and Sandstone and Homogenization to Macroscale, *International Journal of Solids and Structures* (2018), doi: 10.1016/j.ijsolstr.2018.04.024

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

MESOSCALE INVESTIGATION OF DYNAMIC FRACTURE IN QUARTZITE AND SANDSTONE AND HOMOGENIZATION TO MACROSCALE

Nathanaël Durr^{1*}, Martin Sauer¹ and Stefan Hiermaier^{1,2}

¹Fraunhofer Institute for High-Speed Dynamics, Ernst-Mach-Institut, EMI, Eckerstrasse 4, 79104 Freiburg, Germany

²Albert-Ludwigs-Universität Freiburg, Department of Sustainable Systems Engineering –INATECH, Georges-Köhler-Allee 101, 79110 Freiburg, Germany *Correspondence author's e-mail address: nathanael.durr@emi.fraunhofer.de

Nomenclature

С	Longitudinal wave speed
d	Longitudinal distance
Ε	Young's modulus
G_{exp}^{crit}	Experimental dynamic fracture energy
\bar{G}_{exp}^{crit}	Average of experimental G_{exp}^{crit} values
G ^{crit} macro	Macroscopic fracture energy
G_{meso}^{crit}	Mesoscopic fracture energy
ΔI	impulse transfer between two fragments
Κ	Isotropic bulk modulus
ΔL	Distance between the pseudo-RVE and the free end of the specimen
Р	Pressure
\overline{P}	Volumetric average of pressure over the RVE
T_{exp}^{crit}	Experimental dynamic tensile strength
\bar{T}_{exp}^{crit}	Average of experimental T_{exp}^{crit} values
T ^{crit} T _{macro}	Macroscopic tensile strength
T _{meso}	Mesoscopic cohesive traction
T ^{crit} T _{meso}	Mesoscopic critical traction
Δt	Time span
t _{pb}	Pull-back time
t _{peak}	Instant of time at which U_{AC} reaches its peak value
U _{AC}	Free-end velocity measured by the accelerometer
$U_{bc}(t)$	Time-dependent velocity boundary condition
ΔU_{pb}	Pull-back velocity
V _{RVE}	Volume RVE
δ_{meso}	Mesoscopic separation
δ_{meso}^{crit}	Mesoscopic critical traction
δ_{meso}^{max}	Mesoscopic maximum separation along the elastic path
δ	Crack opening velocity
Ė	Strain rate
ρ	Density

Download English Version:

https://daneshyari.com/en/article/6748271

Download Persian Version:

https://daneshyari.com/article/6748271

Daneshyari.com