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a b s t r a c t 

The description of mechanical fields at the vicinity of a bi-dimensional crack-tip can be performed using 

the classic Williams series expansion. While its general structure is well known, complete expressions are 

rarely available for specific problems. This article describes and applies a methodology to express com- 

plete expansions for four given fracture configurations. The procedure relates Williams series coefficients 

to those of expanded Westergaard–Sanford complex potentials for modes I and II. Actual expansions of 

complex solutions for mode I cases are derived using classical complex analysis techniques. Complete 

closed-form results, four power series and one Laurent series, have been determined with this approach. 

The correctness of analytical results and series convergence behavior have been conclusively investigated 

through numerical tests comparing reference complex solutions with truncated series representations. 

The methodology can be applied straightforwardly to new fracture configurations where complex solu- 

tions are known. Complete closed-form expressions can be used to derive, test and improve numerical 

and experimental techniques involving higher order terms in crack-tip expansions. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Williams asymptotic expansion ( Williams, 1957 ) provides an 

analytical framework for the description of elasticity solutions in 

2D solids with straight load-free wedges or cracks. In the context 

of linear elastic fracture mechanics this formalism represents me- 

chanical fields as series expressed in a crack-tip local polar coor- 

dinate system ( Fig. 1 ). Williams approach establishes the separate 

influence of radial and angular dependencies and can take into ac- 

count the linear superposition of the three fracture modes. The 

stress field can then be expressed as: 

σi j (r, θ ) = 

3 ∑ 

m =1 

∞ ∑ 

k = −∞ 

a m 

k · f m,i j 

k 
(θ ) · r 

k 
2 −1 (1) 

with a m 

k 
being configuration-specific coefficients and f 

m,i j 

k 
(θ ) be- 

ing general angular eigenfunctions. From the whole series, terms 

with k ≤ 0 are traditionally discarded so as to ensure the finiteness 

of elastic strain energy around the crack-tip. Among terms of order 

k ≥ 1, the first one is generally the only one considered. Having a 

singular radial dependency r −1 / 2 , it is expected to be the most in- 

fluential term close to the crack-tip and is often sufficient for the 

study of brittle fracture ( Wieghardt, 1907; Irwin, 1957; Wieghardt 

et al., 1995 ). The magnitude of this term is commensurate with the 
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value of the Stress Intensity Factor (SIF). However, for some other 

applications, the second term in the summation has to be taken 

into account too ( Gupta et al., 2015 ). This term is constant and 

is proportional to the well-known T-stress value for σ 11 . SIF and 

T-stress have been collected for many fracture configurations us- 

ing analytical, semi-analytical, experimental and numerical meth- 

ods ( Sherry et al., 1995; Fett, 1998; Tada et al., 20 0 0; Murakami, 

2001 ). Nevertheless, these sole two terms may not provide enough 

information to describe accurately the solution when considering 

mechanical fields beyond the vicinity of the crack-tip. Higher order 

terms have indeed to be taken into account for the sake of preci- 

sion in the analysis of experimental data, the formulation of nu- 

merical methods and the derivation of analytical models for frac- 

ture mechanics. 

In the context of experimental fracture mechanics, the need for 

higher order terms arises for the correct post-treatment of data 

obtained with different techniques: Moiré interferometry ( Barker 

et al., 1985; Rozenburg et al., 2007 ), photoelasticity ( Sanford, 1989; 

Ramesh et al., 1997; París et al., 1997; Guagliano et al., 2011; 

Stepanova et al., 2016, 2017 ), caustics ( Kobayashi, 1993 ), Digital Im- 

age Correlation ( Ayatollahi and Moazzami, 2017 ), or from computa- 

tional tools ( Berto and Lazzarin, 2010; Ayatollahi and Nejati, 2011; 

Berto and Lazzarin, 2013; Veselý et al., 2015; Malíková and Veselý, 

2015; Malíková, 2015; Akbardoost and Rastin, 2015; Veselý et al., 

2016 ). The fitting procedures are either based on a least-square 

approach like the over-deterministic method or a direct interpo- 
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Fig. 1. Crack-tip local polar coordinate system. 

lation technique. A better correlation is observed between the ex- 

perimental data and the fitted series models when several higher 

order terms are taken into account. 

Higher order terms are also considered in some numerical 

methods devoted the simulation of cracked solids. Their formu- 

lations include these terms so as to use a physically sound 

approximation basis for the unknown mechanical fields. Such 

numerical methods include: the Hybrid Crack Element method 

( Karihaloo and Xiao, 2001a,c,b; Xiao and Karihaloo, 20 02, 20 03; 

Karihaloo et al., 2003; Xiao et al., 2004; Xiao and Karihaloo, 2004; 

2007a,b ), the Scaled Boundary Methods ( Song, 2005; Chidgzey 

and Deeks, 2005; Shrestha and Ohga, 2006; He et al., 2012 ), 

the Fractal Finite-Element Method ( Su and Feng, 2005; Su and 

Fok, 2007; Treifi et al., 2008, 2009 ), a singular integral approach 

( Ananthasayanam et al., 2007 ), the Super Singular Element Method 

( Tsang and Oyadiji, 2008 ), the coupling of an analytical patch 

with a computational method ( Passieux et al., 2011; Cheng et al., 

2012a,b; 2013; Liao et al., 2015; Liu et al., 2015, 2016 ), or the finite 

element discretized symplectic method ( Leung et al., 2014 ). The ac- 

curacy and convergence speed of these methods have been shown 

to improve when higher order terms are added to the crack-tip 

fields approximations. 

Regarding analytical results about expressions for higher order 

terms, it appears that the amount of publications on the subject is 

relatively reduced compared to experimental and numerical appli- 

cations. Among the published materials, a notable effort has con- 

cerned the justification of their role when a nonlinear zone exists 

in the crack-tip area. It has been shown that higher order terms are 

required so as to describe elastic fields outside a disk containing 

the nonlinear zone and to contribute to elastic strain energy inside 

( Hui and Ruina, 1995; Chen and Hasebe, 1997; Jeon and Im, 2001; 

Jeon et al., 2003; Zappalorto and Lazzarin, 2011 ). Closed-from ex- 

pressions of series higher order terms for several fracture configu- 

rations are described in Paris (2002) and Tada and Paris (2005) . 

However these results only describe the first few terms in ex- 

pansions and concern complex solutions expressed with Wester- 

gaard approach ( Westergaard, 1939 ). Beside classical series higher 

order terms, other terms with a logarithmic radial influence can 

also be included in the summation to account for non-linear ma- 

terial behavior according to ( Christopher et al., 2007 ). And finally 

to the best of author’s knowledge, complete closed-form series so- 

lutions have only been provided for fracture configurations in an 

infinite medium submitted to remote stresses at infinity ( Theocaris 

and Spyropoulos, 1983; Yan and Yang, 1993; Hello et al., 2012; 

Stepanova and Roslyakov, 2016 ). All results are obtained from ex- 

isting complex solutions expressed with the Kolosov–Muskelishvili 

formalism ( Kolosov, 1909; Muskhelishvili, 1953 ). In Theocaris and 

Spyropoulos (1983) , closed-form stress power series expressions 

for a slant crack under biaxial loading are derived. The authors ap- 

ply these formulae to study the influence of higher order terms 

for the construction of photoelastic isochromatic fringe patterns. 

Yan and Yang (1993) described analytical solutions for a crack un- 

der uniaxial mode I and mode II solicitations. Power series solu- 

tions are given for both modes and a Laurent series expansion is 

provided for mode I. The accuracy of series solutions and the in- 

fluence of convergence domains are tested numerically with re- 

spect to reference real solutions based on a bipolar parametriza- 

tion. More recently Hello et al. (2012) obtained results related to 

previous ones and completed them with a thorough description of 

the coefficients derivation technique from complex solutions, re- 

sults for mode I bi-axial loads, a Laurent series solution for mode 

II, an analytical demonstration of series convergence and a numeri- 

cal exploration of convergence behavior with comparisons to refer- 

ence complex solutions. The latest contribution by Stepanova and 

Roslyakov (2016) provided closed-form power series solutions for 

the configuration of two collinear cracks of finite lengths. Beyond 

their core analytical results, the authors conclusively validate and 

test their solutions with extensive numerical investigations con- 

cerning the influence of series truncation in mode I, mode II and 

mixed problems. 

In this context of relative scarcity of analytical results regarding 

higher order terms, especially about complete closed-form series 

expressions, the purpose of the present article will then be to: 

1. generalize the methodology described in Hello et al. (2012) for 

deriving closed-form power series in the context of initial com- 

plex solutions expressed with the Westergaard–Sanford formal- 

ism, 

2. apply the methodology to derive new complete closed-form 

power series solutions for four practical fracture configurations 

and identify associated Williams coefficients, 

3. derive a new Laurent series solution for one of the configura- 

tions, 

4. validate analytical solutions and investigate their convergence 

behavior through numerical analyses performed with truncated 

series. 

2. Representation of the stress field for fracture problems 

2.1. Williams crack-tip stress series 

Williams model ( Williams, 1957 ) expresses the stress field as a 

series expansion at the crack-tip (1) : 

σi j (r, θ ) = 

3 ∑ 

m =1 

∞ ∑ 

k = −∞ 

a m 

k · f m,i j 

k 
(θ ) · r 

k 
2 −1 

It requires the definition of an infinite set of terms to provide an 

exact solution. Each term of the summation is the product of three 

factors: a problem specific coefficient a m 

k 
, a general angular eigen- 

function f 
m,i j 

k 
(θ ) and a general radial power value. Analytical ex- 

pressions for angular eigenfunctions are provided in the literature 

( Owen and Fawkes, 1983; Karihaloo and Xiao, 2001a; Kuna, 2013 ): 

f 1 , 11 
k 

(θ ) = 

k 

2 

[
(2 + k/ 2 + ( −1 ) 

k ) cos ( k/ 2 − 1 ) θ

−( k/ 2 − 1 ) cos ( k/ 2 − 3 ) θ

]
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f 1 , 22 
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f 1 , 12 
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f 2 , 11 
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(θ ) = − k 
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[
(2 + k/ 2 − ( −1 ) 

k ) sin ( k/ 2 − 1 ) θ

−( k/ 2 − 1 ) sin ( k/ 2 − 3 ) θ

]
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