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a b s t r a c t 

In the direct formulation of boundary integral equation (BIE), thermal effect is present as extra integral, 

destroying the advantage of boundary modeling feature. The most appealing approach is to analytically 

transform the domain integral onto boundary such that the boundary modeling feature can be restored. 

Recently, the leading author has presented a direct transformation for two-dimensional anisotropic ther- 

moelasticity, not relying on any domain distortion. However, due to mathematical complexity, such direct 

transformation has not been achieved for three-dimensional generally anisotropic thermoelasticity. De- 

spite the importance of this topic in the BEM, the direct transformation has remained unexplored so far. 

As the first successful work, this paper presents the complete process to make this direct transforma- 

tion for treating three-dimensional anisotropic thermoelasticity with implementation in an existing code. 

Additionally, this work also takes into account the presence of constant volume heat sources. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Nowadays, anisotropic materials have been widely applied in 

various engineering disciplines. Undergoing thermal treatments 

or environmental temperature change, the anisotropic structures 

will generally have thermoelastic stresses/strains developed inside, 

leading to a decline of structural integrity. Thus, thermoelastic 

analysis of anisotropic materials has always remained to be an im- 

portant topic in engineering practice. 

As an efficient numerical tool, the boundary element method 

(BEM) is well known for its distinctive feature that only the 

boundary needs to be modeled. This is especially useful when 

it is applied to model three-dimensional problems with compli- 

cated geometries, generally requiring great modeling efforts for 

using domain solution techniques. However, for treating thermal 

effects, an additional volume/domain integral will appear in the 

BIE. Any attempt to directly integrate the extra volume integral 

will generally require domain discretization, destroying the dis- 

tinctive feature of boundary modeling. To avoid the direct in- 

tegration, there are several schemes proposed over the years, 

including the dual reciprocity method (DRM) the domain fan- 

ning approach (e.g. Camp and Gipson, 1992 ), the particular inte- 
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gral approach (e.g. Deb and Banerjee, 1990 ), the dual reciprocity 

method (e.g. Nardini and Brebbia, 1982 ), the exact transforma- 

tion method (e.g. Rizzo and Shippy, 1977 ), the radial integration 

method (e.g. Gao, 2003 ), and the Cartesian transformation method 

(e.g. Hematiyan, 2007, Mohammadi et al., 2010 ). Another interest- 

ing new approach was proposed by Wen et al. (1998) to transform 

domain integral to the boundary. Sharing the similar manner as in 

the DRM, this technique uses radial base functions to approximate 

the body force term. As proposed by Sladek and Sladek (1984) , an- 

other approach to avoid the domain integration is to consider the 

uncoupled thermoelasticity as special classes of general coupled 

thermoelasticity with sets of fundamental solutions for particular 

classes of uncoupled problems. Sladek et al. (1990) also presented 

an iterative approach to avoid direct integration of the domain in- 

tegral. 

Obviously, the exact transformation method, abbreviated here 

as ETM, appears to be not only analytically elegant but also nu- 

merically efficient since no further approximation is involved ex- 

cept for the numerical integration itself. For treating 2D gener- 

ally anisotropic thermoelasticity, Shiah and Tan (1999) present 

an analytically transformed boundary integral equation, consider- 

ing the presence of constant volume heat source. However, this 

transformation replies on domain distortion, where the anisotropic 

heat conduction is governed by the standard Poisson’s equation. 

Also, Shiah et al. (2016) applied the ETM to treat 2D transient 
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thermal problems. To reduce the algorithm complexity of ac- 

counting for domain distortion, Pasternak (2012) also presented 

Somigliana-type truly boundary integral equations, where the 

volume-to-surface integral transformation did not rely on any do- 

main distortion for treating 2D anisotropic thermoelasticity. In 

contrast to the previous work in Shiah and Tan (1999) derived 

using the fundamental solution presented by Lekhnitskii (1981) , 

the transformation in Pasternak (2012) was derived using the 

Stroh formalism and the theory of analytic functions. With- 

out the presence of internal heat sources, the obtained integral 

equations in Pasternak (2012) contain only curvilinear integrals 

over the boundary and crack faces. Being based on the devel- 

oped BIEs, the dual boundary element method was further em- 

ployed in Pasternak (2012) to analyze the fracture of anisotropic 

thermoelastic solids. By extending the work ( Pasternak, 2012 ), 

Pasternak et al. (2013) continued to develop Somigliana-type 

boundary integral equations for 2D thermoelectroelasticity of 

anisotropic solids with cracks and thin inclusions. 

As compared with 2D works, pertinent 3D works are extremely 

scarce indeed. For treating the more general case of thermomagne- 

toelectroelasticity, Pasternak et al. (2016) derived Somigliana-type 

truly boundary integral equations for 3D thermomagnetoelectroe- 

lasticity of anisotropic solids. As in their previous work for 2D 

( Pasternak et al., 2013 ), neither volume integral needs to be evalu- 

ated nor domain mapping is involved. All kernels for a point heat 

are obtained explicitly using the Radon transform technique. Also, 

Pasternak et al. (2017) applied the developed BIEs to study 3D frac- 

ture problems for thermomagnetoelectroelastic solids. As an at- 

tempt to exactly transform the volume integral in the thermoe- 

lastic BIE, Shiah and Li (2015) presented solutions of an elliptic 

partial differential equation; however, the computational efficiency 

is another issue arising when implemented in the BEM. Despite 

the success of applying the ETM to treat isotropic thermoelastic- 

ity for both 2D and 3D, its extension to 3D anisotropic thermoe- 

lasticity had not been so successful until Shiah (2016) presented 

an exact volume-to-surface integral transformation for 3D by the 

domain mapping technique as in Shiah and Tan (1999) when 

no heat source was involved. Following this work, Shiah and 

Chong (2016) also implemented this approach to perform interior 

thermoelastic analysis of three-dimensional generally anisotropic 

bodies. Perhaps, it is worth mentioning that the transformation in 

the previous works ( Shiah and Li, 2015 ) was based on the fun- 

damental solutions of 3D generally anisotropic elasticity but not 

thermoelastic fundamental solutions considering point heat source 

( Pasternak et al., 2017 ); thus, no specific considerations need to be 

paid for thermal boundary conditions even heat sources are pre- 

scribed anywhere inside. 

For the domain mapping process taken in Shiah (2016) , com- 

putations of the transformed boundary integrals defined in the 

mapped domain appear to be less direct and more complicated. 

Adopting the idea of removing the process of domain mapping 

( Pasternak, 2012 ), Shiah et al. (2014) proposed a new direct trans- 

formation to treat 2D anisotropic thermoelasticity without heat 

source, where no coordinate transformation was involved. To the 

authors’ best knowledge, such direct and exact transformation for 

3D generally anisotropic elasticity has remained unexplored de- 

spite its importance for the BEM development. This is majorly be- 

cause of the mathematical complexity of the Green’s function of 

3D anisotropic elasticity. This paper aims to present the complete 

process to make the direct volume-to-surface integral transforma- 

tion for 3D anisotropic thermoelasticity when a constant volume 

heat source is present inside domain. All presented formulations 

have been successfully implemented in an existing code, based 

on quadratic isoparametric elements. To illustrate the veracity of 

all formulations as well as the successful implementation, a few 

benchmark examples are investigated in the end. 

2. BIE of thermoelasticity 

As has been well established and documented in many text- 

books, the constitutive law between stresses σ ij and strains εij 

with thermal effects is governed by the well-known Duhamel–

Neumann relation, that is 

σi j = C i jkl ε kl − γi j �, (i, j, k, l = 1 , 2 , 3) (1) 

where � is the temperature change, C ijkl are the material stiff- 

ness coefficients, and γ ij represent the thermal muduli, given by 

γ ij = C ijkj αkl with αkl being the coefficients of linear thermal ex- 

pansion. Under the steady-state condition, the anisotropic thermal 

field with constant heat source is governed by 

K jk �, jk = C 0 , (2) 

where K jk denotes the heat conductivity coefficients and C 0 is the 

constant heat generation rate. 

For a linear elastic body with thermal effects in the domain �, 

the displacement u j and traction t j on the boundary surface � are 

cross-related with each other by the well known BIE as follows 

( Sladek and Sladek, 1984 ): 

c i j (ξ ) u j (ξ ) + 

∫ 
�

T ∗i j (ξ , x ) u j (x ) d�(x ) 

= 

∫ 
�

U 

∗
i j (ξ , x ) t j (x ) d�(x ) + 

∫ 
�

�(x ) γ jk U 

∗
i j,k (ξ , x ) d�(x ) , (3) 

where c ij ( ξ) are the geometric coefficients of the source point ξ, 

and U 

∗
i j 
(ξ , x ) and T ∗

i j 
(ξ , x ) are the fundamental solutions of dis- 

placements and tractions, respectively. The very early work for de- 

riving the three-dimensional Green’s function of anisotropic elas- 

ticity was contributed by Lifshitz and Rosenzweig (1947 ) to express 

it as a contour integral around a unit circle on an oblique plane. 

For applying the BEM to treat 3D elastostatics, numerical compu- 

tation has been an interesting subject in the BEM community over 

the past few decades. Details about how the present work com- 

putes the fundamental solutions will be addressed in the next sec- 

tion after treatment of the extra volume integral is elaborated. As 

the main issue of the present work, the last integral in Eq. (3) , 

denoted here by V j for brevity, is a volume integral that needs 

to be transformed to the boundary. As has been presented pre- 

viously by Pasternak et al. (2013) for 2D, the extra volume inte- 

gral can be directly transformed onto the boundary without any 

coordinate transformation; however, the transformation process to 

be made here employs the fundamental solutions of 3D generally 

anisotropic elastostatics that do not involve any point heat source. 

Before the complete 3D transformation process is elaborated, 

previous derivation of the direct transformation for 2D is reviewed 

first. Consider the following identity ( Pasternak et al., 2013 ): ∫ 
�

( f i K jk �, jk − �K jk f i , jk ) d�

= 

∫ 
�

[ ( f i K jk �, j ) ,k − (�K jk f i ,k ) , j 
] d�, (4) 

where f i is the component of an arbitrary function f . As a result 

of applying the Green’s second identity to the right hand side of 

Eq. (4) , one immediately obtains ( Pasternak et al., 2013 ) ∫ 
�

( f i K jk �, jk − �K jk f i , jk ) d� = 

∫ 
�

( f i K jk �, j n k − �K jk f i,k n j ) d�, 

(5) 

In the previous work ( Pasternak, 2012 ), no heat source was as- 

sumed. However, in engineering practice, it is quite often to in- 

volve volume heat generation due to chemical reaction or electri- 

cal heating in domain. For this, the constant source term C 0 in 

Eq. (2) is taken into account. By substituting Eq. (2) into Eq. (5) , 
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