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a b s t r a c t 

This paper gives a theoretical proof that the one dimensional (1D) Willis-form equations with displace- 

ment coupling terms can retain time synchronization under spatial transformations. This is also sup- 

ported by a numerical example that compares the distributions of the wave velocities of an inhomo- 

geneous material calculated by the Willis-form equations and the classical elastodynamic equations, re- 

spectively. It further demonstrates that the classical elastodynamic equations are good approximations 

of the Willis-form equations only when the wave frequency is sufficiently high. These findings serve as 

additional evidence of the validity of the Willis-form equations for inhomogeneous media. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Transformation methods play important roles in the designing 

of metamaterials ( Pendry et al., 2006; Schurig et al., 2006; Cum- 

mer and Schurig, 2007; Chen and Chan, 2010; Chen et al., 2010 ). 

These methods transform wave equations from a virtual space to a 

physical space of interest. The material parameters in the physical 

space can be obtained by comparing the wave equations before 

and after the transformation if they are form-invariant. Usually, 

the media in the virtual space are homogeneous, while the media 

in the physical space are inhomogeneous and are commonly called 

‘transformation media’. The prerequisite to using transformation 

methods is the form-invariant property of the wave equations 

under a general spatial transformation, which is true for elec- 

tromagnetic ( Pendry et al., 2006; Chen et al., 2010 ) and acoustic 

waves ( Chen and Chan, 2010 ). However, Milton et al. (2006) proved 

that the classical elastodynamic equations in frequency domain 

will change to the Willis equations ( Willis, 1981; Willis, 1997 ) after 

the transformation when the transformation gauge is taken as the 

deformation gradient ( Norris and Shuvalov, 2011 ). This means the 

classical elastodynamic equations may fail to accurately describe 

elastic wave propagations in transformed inhomogeneous media, 

and therefore cannot be used to design ideal elastic metamaterials. 

This is the reason why people can only control bending waves in a 

plate when strains are of the von-Kármán form ( Farhat et al., 

2009 ) or approximately control in-plane elastic waves 
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( Hu et al., 2011; Norris and Parnell, 2012 ), based on classical 

elastodynamic equations. 

The Willis equations were originally proposed for inhomo- 

geneous media by using the perturbation method ( Willis, 1981, 

1997 ). They contain a constitutive equation 

〈 σ 〉 = C e f f 〈 e 〉 + S e f f 〈 ̇ u 〉 , (1a) 

and an equation of motion 

∇ · 〈 σ 〉 + f = S † 
e f f 

〈 ̇ e 〉 + ρe f f 〈 ̈u 〉 , (1b) 

where σ, e , u , f are stress, small strain, displacement, and body 

force, respectively; the angle bracket denotes ensemble average; 

C eff, S eff, S 
† 

e f f 
(the adjoint of S eff) and ρeff are non-local operators; 

and the overhead dot denotes time derivative. Since the structure 

of Willis equations does not change after a transformation (form- 

invariance, see Milton et al., 2006 ), these equations can be used 

to design perfect elastic wave rotators and nearly perfect elastic 

wave cloaks ( Xiang, 2014 ). This gives evidence that the Willis equa- 

tions outperform the classical elastodynamic equations for inho- 

mogeneous media. 

The Willis-form equations obtained by Xiang (2014) in time do- 

main are slightly different from Eq. (1), because they have dis- 

placement coupling terms instead of velocity coupling terms and 

are in local forms: 

σ = C : e + S · u, (2a) 

∇ · σ + f = S T : e + K · u + ρ · ü , (2b) 

where C is the elasticity tensor; S is a third order tensor and S T : e 

denotes S ijk e ij in index notation; ρ is the mass density tensor; and 

https://doi.org/10.1016/j.ijsolstr.2017.12.032 

0020-7683/© 2018 Elsevier Ltd. All rights reserved. 

https://doi.org/10.1016/j.ijsolstr.2017.12.032
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ijsolstr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijsolstr.2017.12.032&domain=pdf
mailto:xiangzhihai@tsinghua.edu.cn
https://doi.org/10.1016/j.ijsolstr.2017.12.032


74 R.W. Yao, Z.H. Xiang / International Journal of Solids and Structures 141–142 (2018) 73–77 

K is a symmetric matrix. However, Yao et al. (2018) proved that Eq. 

(2) is mathematically equivalent to Eq. (1) by using the differential 

property of time convolution. They further demonstrated that S is 

the gradient of pre-stresses and K is the negative gradient of the 

initial body force that balances with the pre-stresses. Since these 

local form equations contain the gradient of pre-stress, they can 

be regarded as the limits of non-local form equations when the 

group of inhomogeneous materials approaches to a point. These 

theoretical results are not only in accordance with the theoretical 

findings of Xiang and Yao (2016) , but also have been verified by a 

rotational spring experiment ( Yao et al., 2018 ). 

Since the transformation method for the design of metamateri- 

als involves only spatial mappings, the elastic wave should use the 

same time to pass through the transformed media in the physi- 

cal space as that to pass through the homogeneous media in the 

virtual space. This means the accurate elastodynamic equations for 

inhomogeneous media should have the time synchronization prop- 

erty. Although this property has been numerically demonstrated 

by the example of two dimensional (2D) elastic wave rotators in 

Xiang (2014) , it is better to give a more explicit theoretical proof 

by using analytical solutions. However, since it is very difficult 

to obtain analytical solutions for general 2D or three dimensional 

(3D) problems (see Appendix), people usually use the solution of 

a 1D problem to underline basic mechanisms ( Willis, 2009 ). Fol- 

lowing this logic, this paper will discuss only P wave propagations 

in 1D transformed inhomogeneous media and demonstrates that 

only the Willis-form equations with displacement coupling terms 

have the time synchronization property, while the classical elasto- 

dynamic equations are special cases of the Willis-form equations 

for homogeneous media. Thus, it gives another evidence of the va- 

lidity of the Willis-form equations. 

2. The 1D Willis-form equations 

The 1D classical elastodynamic equations free of body force in 

the virtual space can be written as 

σ̄ ( ̄x , t ) = C̄ 
∂ ̄u ( ̄x , t ) 

∂ ̄x 
, (3a) 

∂ σ̄ ( ̄x , t ) 

∂ ̄x 
= ρ̄

∂ 2 ū ( ̄x , t ) 

∂ t 2 
, (3b) 

where x̄ is the coordinate in the virtual space; t denotes time; ū 

is the displacement; σ̄ is the longitudinal stress; C̄ and ρ̄ are the 

constant stiffness and mass density, respectively. In this paper, field 

variables and constants in the virtual space are denoted with over- 

head bars; otherwise they are in the physical space. After applying 

a spatial mapping x = f ( ̄x ) , Eq. (3) is expected to change the form. 

Generally, Norris and Shuvalov (2011) have pointed out that 

one can obtain the Willis-form equations if assuming the field 

variables before and after transformation satisfy u = F −T · ū and 

σ = F · σ̄ · F T / det (F ) , where F is the deformation gradient with el- 

ements F i j = ∂ x i / ∂ ̄x j . Thus, for this special 1D problem one can as- 

sume 

u ( x, t ) = ū ( ̄x , t ) / f ′ ( ̄x ) , (4a) 

σ ( x, t ) = f ′ ( ̄x ) ̄σ ( ̄x , t ) , (4b) 

because F = F T = det (F ) = f ′ ( ̄x ) , where f ′ ( ̄x ) is the derivative of f 

over x̄ . 

Substituting Eq. (4) into Eq. (3), and using the chain rule 

∂ () /∂ ̄x = f ′ ( ̄x ) ∂ () /∂ x , one can obtain the 1D Willis-form equations 

in the physical space 

σ ( x, t ) = C ( x ) 
∂u ( x, t ) 

∂x 
+ S ( x ) u ( x, t ) , (5a) 

∂σ ( x, t ) 

∂x 
= S ( x ) 

∂u ( x, t ) 

∂x 
+ K ( x ) u ( x, t ) + ρ( x ) 

∂ 2 u ( x, t ) 

∂ t 2 
, (5b) 

where 

C(x ) = C̄ 
[

f ′ ( ̄x ) 
]3 

, ρ( x ) = ρ̄ f ′ ( ̄x ) , 

S ( x ) = C̄ f ′ ( ̄x ) f ′′ ( ̄x ) and K ( x ) = C̄ 
[

f ′′ ( ̄x ) 
]2 

/ f ′ ( ̄x ) . (6) 

Compared with Eq. (3), Eq. (5) has three additional terms: Su, 

S ∂ u / ∂ x and Ku , which are generally nonzero in inhomogeneous 

media if f ′′ ( ̄x ) � = 0 . If the spatial mapping function f is linear, 

the transformed media must be homogeneous. In this case, Eq. 

(5) is the same as the classical elastodynamic equation, because 

f ′ ( ̄x ) = const and f ′′ ( ̄x ) = 0 . 

Eq. (5a) is the Willis-form constitutive equation that defines the 

stress increment due to an infinitesimal deformation in inhomoge- 

neous media. It is different from the classical constitutive equation 

in homogenous media due to an additional term Su , which con- 

tains the gradient of pre-stress S . This is a natural result because 

the pre-stress is the concomitant of inhomogeneity ( Xiang and Yao, 

2016; Yao et al., 2018 ). The similar pre-stress effects due to the 

transformation are also reported by Norris and Parnell (2012) and 

Colquitt et al. (2014) . 

As aforementioned, the classical elastodynamic equations are 

commonly used to approximately describe the wave propagation 

in inhomogeneous media. By removing the additional terms in Eq. 

(5), one can obtain the classical 1D elastodynamic equations for 

the inhomogeneous transformation media 

σ ( x, t ) = C ( x ) 
∂u ( x, t ) 

∂x 
, (7a) 

∂σ ( x, t ) 

∂x 
= ρ( x ) 

∂ 2 u ( x, t ) 

∂ t 2 
. (7b) 

3. Wave velocity 

Substituting Eq. (5a) into Eq. (5b) , yields 

C ( x ) u ,xx ( x, t ) + C ,x ( x ) u ,x ( x, t ) + R ( x ) u ( x, t ) = ρ( x ) 
∂ 2 u ( x, t ) 

∂ t 2 
, (8) 

where the subscript ‘,’ denotes the differential operation over x ; 

and R ( x ) = S , x ( x ) − K ( x ). 

According to the Bloch’s theorem ( Brillouin, 1946 ), the wave 

amplitude a ( x ) should be considered as a function of position for 

periodic media. Since periodic media can be regarded as special 

cases of inhomogeneous media, one can try to extend this assump- 

tion for general inhomogeneous media. Furthermore, the initial 

wave phase should be calculated as an integration of wave num- 

ber p ( x ) along the route from a reference position x 0 with zero 

phase to the present position x . Therefore, the displacement of 

monochromatic vibrations in inhomogeneous media can be writ- 

ten as 

u ( x, t ) = a ( x ) exp 

{
i 

[∫ x 

x 0 

p ( s ) d 

s − ω t 

]}
, (9) 

where ω is the angular frequency. This equation is also correct for 

homogenous media, where the wave amplitude and wave number 

are constants. 

It is understood that the complex notation of Eq. (9) is a conve- 

nient choice for mathematical deduction. The physical quantity is 

either the real or the imaginary part of the corresponding solution. 

Therefore, after substituting Eq. (9) into Eq. (8) , the resultant real 

and imaginary parts should both equal to zero: [
R ( x ) + ρ( x ) ω 

2 − C ( x ) p 2 ( x ) 
]
a ( x ) + C ,x ( x ) a ,x ( x ) + C ( x ) a ,xx ( x ) = 0 , 

(10) 
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