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a b s t r a c t 

We discuss the static states of a peridynamic nonlinear elastic bar of finite length in a hard device, 

which represents a continuum description of a complex hierarchical structure with interacting long-range 

crosslinkers, of the type encountered in biological systems. The nonlocal character of the model requires 

that edge conditions are defined on a boundary layer with the same length of the horizon, affecting the 

solution in the bulk interior. Assuming that the constituent microscopic ligaments contain bistable units 

governed by a non-convex potential, we show that the development of coexisting folded-unfolded phases, 

either synchronized or unsynchronized, induces in the displacement field the formation of undulations 

at a micro-scale of the length of the horizon, associated with strain localizations triggered at the bar 

ends. The equilibrium paths, found numerically with a pseudo-arc-length continuation method, become 

unstable within a certain range of elongation, suggesting the possible occurrence of a negative-stiffness 

response. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

The response of a wide range of different-in-type materials to 

strain- or stress-induced disturbances is governed by an underly- 

ing microscopic transition in a great variety of configurations. Dif- 

fusionless martensitic transformation and twinning are associated 

with fine layered microstructures in phase transforming materials 

( Ball and James, 1987; Bhattacharya, 1992 ). When ductile solids are 

deformed into the plastic range, the deformation highly localizes in 

slip bands, progressively forming and almost equally spaced, usu- 

ally following the directions of maximum shear ( Froli and Royer- 

Carfagni, 1999 ). Strain localization in the form of shear bands may 

also represent the preferential pre-failure deformation mode of 

natural rocks, granular materials and quasi-brittle materials in gen- 

eral ( Amitrano and Schmittbuhl, 2002 ). In all these cases, the typi- 

cal stress-strain relation shows a mismatch between the nucleation 

and the propagation thresholds, due to a nucleation peak possibly 

accompanied by nonlocal interactions between phases, slip bands, 

or cracks. 
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To simulate phenomena of this kind, the absolute minimization 

of a non (quasi) convex elastic energy for the material has repre- 

sented for the last decades a far reaching approach that general- 

izes, for the solid state, the van der Waals model for fluids. This 

has become clear since Ericksen’s analysis ( Ericksen, 1975 ) of the 

equilibrium of finite-length bars pulled at the ends governed by 

a non-monotonic stress-strain constitutive relation. This is charac- 

terized through the local and global minimizers of a free energy 

functional of the form 

E[ u ] = 

∫ L 

x =0 

�(u 

′ ) d x , (1.1) 

complemented by the work done by external forces in the case of 

a soft device. In (1.1) x ∈ (0, L ) is the position of a material point 

of the bar in its natural state, u : (0 , L ) → R and u ′ (0 , L ) → R are, 

respectively, the displacement field and its spatial derivative, and 

� is the strain energy density, which is non-covex from the as- 

sumed form of the constitutive relation. At certain values of the 

average elongation, there exists an uncountable number of inho- 

mogeneous, energy-minimizing equilibrium solutions for the bar, 

showing that, albeit the above indeterminacy, nonlinear elasticity 

theory can model phase transitions and the formation of equilib- 

rium mixtures in solid bodies. Several attempts have been made 

to reduce the indeterminacy and predict the location of interfaces 

across which the displacement gradients are discontinuous (see, 
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e.g., Vainchtein et al., 1999 and references cited therein). The basic 

strategy has been to add terms on the right-hand-side of (1.1) , to 

penalize the formation of sharp interfaces and control their num- 

ber, so to capture the formation of finite-scale microstructures, 

phase nucleation and hysteresis ( Vainchtein et al., 1999 ). Recently, 

Xuan et al. (2015) have used this model together with a hybrid 

numerical method to calculate approximate inhomogeneous solu- 

tions, characterized by the interface number, interface thickness 

and strain amplitude. 

An application of non-convex minimization to describe the phe- 

nomena of strain localization and serrated deformation of mild 

steel was pursued in Royer-Carfagni (20 0 0) . Supposing that the en- 

ergy density �( · ) is a function not of the local strain u ′ but of its 

average weighted value over a reference length, the model could 

explain the onset of elastic, plastic and strain-hardening phases in 

a bar, interpreting the formation of slip bands and stress oscilla- 

tions (Portevin–Le Chatelier effect). The model was later extended 

in De-Lellis and Royer-Carfagni (2002) by adding a surface energy 

term, but keeping as a distinctive feature the nonlocal spatial de- 

pendence of the strain measure. Indeed, in the orderly formation 

of plastic bands in tensile bars, as evidenced in the experimen- 

tal campaign of Froli and Royer-Carfagni (1999) , the crucial role is 

played by the nonlocal interaction of particles, that in Froli and 

Royer-Carfagni (20 0 0) has been interpreted through a 1D assembly 

of interacting links. 

We believe that the peridynamic theory represents a power- 

ful tool to interpret phenomena of this kind, for which phase- 

like transformation and nonlocal effects are decisive. Devel- 

oped independently by Kunin (1982 , 1983 ), Rogula (1982) , and 

Silling (20 0 0) and further generalized in Silling et al. (2007) , the 

peridynamic theory is an extension of the classical continuum me- 

chanics theory, in which the differential operator is replaced by 

integrals of interaction forces between near particles separated 

by finite distances within an intrinsic material length, called the 

horizon . Since then, several models have been proposed, among 

which the linear peridynamic model proposed in Aguiar and Fos- 

dick (2014) and ( Aguiar, 2016a; 2016b ), which is a generalization 

of a linearized peridynamic approach of Silling et al. (2007) . 

The combination of the peridynamic idea with non-convex min- 

imization appears to have been first explored by Dayal and Bhat- 

tacharya (2006) to study the kinetics of phase transformations. The 

material model for the interaction forces has a non-monotonic tri- 

linear form, in analogy with the non-monotonic stress-strain rela- 

tion of Ericksen’s bars, and a viscous damping term. The authors 

used a particular measure of “strain ” (sometimes called elonga- 

tion ) in their constitutive relation, defined as δu / δx , where δx = 

x ′ − x is the signed distance between particles at x ′ and x , whereas 

δu = u (x ′ ) − u (x ) is the corresponding relative displacement. In the 

static case, the corresponding equilibrium equation would be of 

the form ∫ L 

x =0 

φ

(
δu 

δx 

)
h (δx ) d x + b(x ) = 0 , (1.2) 

where, apart from a possible viscous damping term, φ( · ) is a non- 

monotone trilinear function, h ( · ) is a function decaying rapidly and 

b ( x ) denotes the body force per unit reference length. In this way, 

any jump in the displacement field provokes a singularity in this 

measure of strain ( δu � 0 as δx → 0), which is energetically penal- 

ized. As a consequence of this, the response of the bar in a hard 

device has similarities with Ericksen’s model: the material leaves 

the low-strain curve close to the Maxwell stress, suffers strain in- 

crements at constant stress till it reaches the high-strain curve and 

then follows it (see Dayal and Bhattacharya, 2006 , Section 4). The 

phase boundaries nucleate at the ends of the bar and move along 

the bar as the applied displacement increases. Due to the intrinsic 

nonlocal character of peridynamics, no additional conditions, such 

as nucleation criterion and kinetic relations, are needed to simu- 

late phase boundary nucleation and propagation. 

Here, we also use a non-monotone relation and a local stability 

criterium to perform a detailed investigation of the morphology of 

microstructures and phase mixtures, but the basic difference be- 

tween our approach and that of Dayal and Bhattacharya (2006) is 

that, here, the trilinear constitutive equation is a function of the 

relative displacement δu only, not weighted by 1/ δx as in (1.2) . 

This provokes a “weak” interaction between neighboring points, 

so that strain localizations may easily appear. Since the major 

strength of the peridynamic theory is that it can be applied on 

highly irregular fields, it is worth investigating models of this type, 

which represent the nonlinear extension of the cases considered in 

Silling et al. (2003) and Mikata (2012) . 

The proposed model may represent the hierarchical network ar- 

chitecture of complex distributed biological systems. Representa- 

tive examples are skeletal muscles, whose response at fast time 

scales is dominated by long range interactions that induce coop- 

erative behavior of the constituent ligaments ( Caruel et al., 2013 ), 

or proteins, which have been modeled as elastically bonded net- 

work amenable of mechanical unfolding in different pulling direc- 

tions ( Dietz and Rief, 2008 ). Further examples are the unzipping of 

biological macromolecules studied by Gupta et al. (2011) and the 

folding and unfolding of RNA hairpins analyzed by Thomas and 

Imafuku (2012) using a conventional zipping model that includes 

both the free energy for RNA binding and the elastic free energy 

of the system. Approaches of this kind aim at simulating that the 

cells of multicellular organisms adhere to the extracellular matrix 

through clusters, spanning a size range from very few to thousands 

of adhesion bonds. 

With reference to the paradigmatic case of striated muscles, 

Huxley and Simmons (1971) suggested that each cross linker be 

represented by a hard spin model, with a bistable potential pro- 

viding two folding configurations, assumed to have infinitely nar- 

row energy wells corresponding to two distinct chemical states. A 

snap-spring element can be alternatively used, to remove the ir- 

regularities driven by the hard spin model and effectively inter- 

polate between the soft and hard device behaviors ( Marcucci and 

Truskinovsky, 2010; Caruel et al., 2015 ). Such element may be fur- 

ther complemented with a series spring, to simulate the connec- 

tion with the back bone in the case of muscles, or the elasticity of 

the filaments in the case of proteins ( Dietz and Rief, 2008 ). When 

elements of this kind are arranged in complex bundles, the over- 

all response may correspond to synchronized phase transitions, 

where the individual units undergo conformal changes, interpreted 

as generic unfolding states in the bistable elements. This may lead 

to unusual material properties, such as negative equilibrium stiff- 

ness and different behavior in force- and displacement-controlled 

loading conditions ( Caruel et al., 2015 ). 

There are cases for which experiments indicate that the elastic 

coupling modeled by the series spring is not significant ( Dietz and 

Rief, 2008 ), so that the response of the single cross link is governed 

by the spin element only. Here, we assume a regular arrangement 

of cross links with different size ranges, whose response is a func- 

tion of the relative displacement of the link ends. The continuum 

description of this arrangement is a perydinamic bar, where the 

properties of the spin elements are modeled through snap-springs, 

active within the horizon and tuned by the material micromodu- 

lus. This model allows for discontinuous displacement fields, which 

may be associated with the occurrence of strain localizations, frac- 

tures, or, plastic slips. 

The nonlinear peridynamic model can capture interface num- 

ber, interface thickness, and strain amplitude, but the resulting 

microstructure becomes really very complex due to the nonlinear 

nonlocal interactions. Three stages of deformation are identified. 

The first stage, called undulation , corresponds to oscillations in the 
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