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a b s t r a c t 

Many materials such as wood, as well as rigid and flexible foams, exhibit transverse isotropic or even 

anisotropic mechanical properties in terms of their elastic and inelastic responses. However, there appear 

to be few constitutive models that are able to appropriately and accurately describe them. In this study, 

constitutive model that describes transversely isotropic material displaying anisotropic hardening, based 

on a weak form of definition of anisotropic hardening, is proposed. This form of hardening is incorporated 

into a modified yield function by introducing a matrix comprising dimensionless hardening functions. A 

modified stress is also defined, such that the yield surface remains stationary in the associated stress 

space, thus enabling the proposed anisotropic hardening function to be evaluated. The model is then 

used to predict the stress-strain curves and deformation of a transversely isotropic polyethylene foam 

exhibiting transversely isotropic hardening, subjected to compression at different angles to the axis per- 

pendicular to the plane of isotropy. Good agreement between predictions based on the proposed model 

and Jebur’s experimental data (Jebur, 2013) is observed; for comparison, predictions employing an ear- 

lier transversely isotropic model but with isotropic hardening (Tagarielli et al., 2005) shows noticeable 

deviation from the experimental data. The results substantiates the validity of the proposed anisotropic 

hardening model in describing the mechanical and deformation response of a transversely isotropic ma- 

terial exhibiting transversely isotropic hardening. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

It has been observed that many materials and structures such 

as wood ( Gibson and Ashby, 1999 ), octet trusses ( Deshpande et al., 

2001 ), and rigid and flexible foams ( Lee and Ramesh, 2004 ), ex- 

hibit transverse isotropy in their mechanical properties. Conse- 

quently, researchers have directed their attention at developing 

constitutive models to describe the mechanical response of trans- 

versely isotropic materials ( Lubliner, 2008; Guo et al., 2008; Hill, 

1998; Tagarielli et al., 2005 ). A well-recognized one for isotropic 

foam was proposed by Deshpande and Fleck (20 0 0) , who em- 

ployed a quadratic description of the yield surface of metallic foam 

and obtained good agreement between experimental and theo- 

retical results. This isotropic foam model was then further de- 

veloped to describe the transversely isotropic elastic and initial 

yield characteristics of compressible solids (foams) ( Tagarielli et al., 

2005 ), and was successfully applied to balsa wood. However, 
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in this model, the hardening behavior after initial yield was 

assumed to follow a scalar function, which does not capture 

anisotropic hardening. Some constitutive models have also been 

proposed for transversely isotropic materials, based on hypere- 

lastic or viscoelastic theories; Jemiolo generalized Odgen’s model 

for isotropic material to include transverse anisotropy under fi- 

nite deformation ( Jemioło and Telega, 2001 ); Peng developed an 

anisotropic hyper-elastic constitutive model for biological mate- 

rials ( Peng et al., 2006 ), while Zhurov proposed a transversely 

isotropic visco-hyperelastic description of compressible soft tis- 

sues ( Zhurov et al., 2007 ). However, these models are not appli- 

cable to large inelastic deformation, since they are based on elas- 

ticity. For plastic deformation, Guo ( Guo et al., 2008; Guo and 

Caner, 2010 ) developed a transversely isotropic model for porous 

materials based on a neo-Hookean strain energy function, while 

Jebur (2013) utilized a hyperfoam model to predict the compres- 

sive stress for polyethylene foam and obtained good results. How- 

ever, in Guo’s model and the hyperfoam model, the influence of 

loading direction was not considered. Hence, for these two mod- 

els, the parameter values from fits with experiments for one load- 

ing direction are not applicable for loading in other directions. 
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Apart from transverse isotropy of the elastic response and ini- 

tial yield, post-yield hardening is generally anisotropic for trans- 

versely isotropic materials. Research into anisotropic hardening 

dates back to the 1950s ( Besseling, 1953 ), but significant find- 

ings seem to have been published only after the 1970s. An 

anisotropic hardening constitutive model has been proposed by 

Mr ̌oz, based on introducing a set of nesting surfaces within a 

stress-space, to define how the hardening moduli vary during de- 

formation ( Mroz et al., 1978 ). He subsequently applied this model 

successfully to the analysis of elastic-plastic deformation of soil 

( Mroz et al., 1979 ). Later, Hashiguchi also developed an anisotropic 

hardening model by defining three surfaces — a loading surface, 

a sub-yield surface and a distinct-yield surface ( Hashiguchi, 1981 ). 

Voyiadjis derived an Eulerian constitutive model for finite defor- 

mation plasticity with anisotropic hardening ( Voyiadjis and Kat- 

tan, 1989 ), and more recently, a familiar constitutive model known 

as the homogeneous anisotropic hardening (HAH) model has been 

proposed by Barlat ( Barlat et al., 2011, 2013, 2014 ). It was reported 

that the HAH model is currently the only one which can cap- 

ture the Bauschinger effect adequately, together with the evolu- 

tion of anisotropic hardening in sheet metals ( Yoshida et al., 2015 ). 

As a result, the HAH model has been utilized by subsequent re- 

searchers in terms of incorporating a dislocation-based harden- 

ing model ( Lee et al., 2013 ), developing a stress update algorithm 

( Lee et al., 2015 ) and application to high strength steel ( Fu et al., 

2016 ). However, the derivation and numerical implementation of 

the HAH model are complicated and has not yet been successfully 

applied to large deformation plasticity. 

This work is directed at developing a simple, transversely 

isotropic constitutive model to capture anisotropic hardening un- 

der monotonic loading, using classical plasticity theory, with the 

objective of describing compressible materials such as rigid and 

flexible foams which exhibit transverse isotropy at initial yield, fol- 

lowed by anisotropic hardening. The transversely isotropic model 

by Tagarielli–Deshpande ( Tagarielli et al., 2005 ) is first briefly de- 

scribed, before an anisotropic hardening model based on extending 

the Tagarielli–Deshpande model is elaborated on. Predictions base 

on the proposed anisotropic model are then compared with exper- 

imental data reported by Jebur (2013) . 

2. Phases of anisotropic response 

Anisotropy, or direction-dependent mechanical properties, can 

be considered in terms of three phases: elasticity, initial yield, and 

post-yield hardening (or softening); the anisotropy of these phases 

generally differs. To aid understanding, the following definitions 

are first introduced before the constitutive model is presented. 

Defenition 1. A material is anisotropic if its elastic behavior (i.e. 

Young’s modulus, Poisson’s ratio, etc) or initial yield stress is direc- 

tionally dependent; it is otherwise isotropic. In the present work, 

materials which are transversely isotropic and orthotropic, also fall 

under Definition 1. For instance, a “transversely isotropic material”

refers to a material exhibiting transverse isotropy in either its elas- 

tic behavior or initial yield response. 

Defenition 2. Let Y i j (i, j = 1 , 2 , 3) be functions representing the 

flow stresses along the 1, 2 and 3 axis directions, and Y 0 
i j 

are the 

respective initial yield stresses for uniaxial loading and shear. The 

material exhibits isotropic/anisotropic hardening if the ratios of 

the six flow stresses to the initial yield stresses, defined by the 

hardening function h i j = Y i j /Y 0 
i j 

(no sum on i, j; i, j = 1 , 2 , 3) are 

equal/unequal. 

Fig. 1 depicts a two-dimensional case for Definition 2. Tradi- 

tionally, isotropic/anisotropic hardening implies that the shape of 

the yield surface is preserved ( Fig. 1 (a)), or varies ( Fig. 1 (b)) dur- 

ing deformation. Based on this perspective of isotropic/anisotropic 

hardening, an infinite number of experiments are needed to iden- 

tify the isotropic/anisotropic hardening behavior, because the evo- 

lution of all points on the yield surface should be determined 

to ascertain whether the shape of the yield surface is preserved 

or varies during its evolution. For practicality, Definition 2 in 

this study will adopt a “weak” form of the exact definition of 

isotropic/anisotropic hardening — i.e. instead of checking all the 

points on the yield surface, Definition 2 will only focus on spe- 

cific directions — two uniaxial ( Y 11 , Y 22 ) and one shear Y 12 — for a 

2D case as shown in Fig. 1 . For a general three-dimensional case, 

Definition 2 will examine the shape of the yield surface for six 

modes of loading (three uniaxial and three shear), based on the di- 

mensionless hardening ratio functions h ij . Since the dimensionless 

hardening functions h ij are defined by nondimensionlizing the flow 

stress with respect to the initial yield stress, it will only reflect the 

anisotropy of the post-yield phase because the anisotropy of the 

initial yield stress is already excluded by the nondimesionlization. 

3. Isotropic hardening model 

3.1. Brief description of Tagarielli–Deshpande model 

This effort to develop a constitutive model for transversely 

isotropic materials with anisotropic hardening behavior, is an ex- 

tension of the work by Deshpande ( Deshpande and Fleck, 20 0 0; 

Tagarielli et al., 2005 ). In Tagarielli and Deshpande’s work, a trans- 

versely isotropic compressible solid is described with respect to 

a Cartesian coordinate system (1,2,3), such that the directions 1-2 

define the plane of isotropy, and direction 3 is the direction along 

which the mechanical properties differ. The relationship between 

the Cauchy stresses and the elastic strains is given by: 

σ = Cε 

e (1) 

where the Cauchy stress σ and the elastic strain ε e tensors fol- 

low the Voigt notation: σ = [ σ11 , σ22 , σ33 , σ 12 , σ 23 , σ 31 ] 
T , ε e = 

[ ε e 
11 

, ε e 
22 

, ε e 
33 

, 2 ε e 
12 

, 2 ε e 
23 

, 2 ε e 
31 

] T , and C is the elastic stiffness 

matrix with the inverse: 

C −1 = 
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where E 1 and E 3 are the Young’s moduli in directions 1 and 3 

respectively; E 13 is the shear modulus in the 1–3 plane, and ν12 

and ν13 are the two Poisson’s ratios defined by ν12 = − ˙ ε e 
22 

/ ̇ ε e 
11 

, 

ν13 = − ˙ ε e 
33 

/ ̇ ε e 
11 

for uniaxial loading along directions 1 and 3 re- 

spectively. 

Lubliner (2008) analyzed the yield criterion for anisotropic ma- 

terials, and according to his analysis which adopted the generalized 

von Mises criterion derived by Hill (1998) , the effective stress for 

an anisotropic material can be expressed as: 

σ̄ 2 = A i jkl σi j σkl (2) 

where A is a 4th order tensor which has the same symmetry as 

the elastic stiffness tensor ( A i jkl = A jikl = A kli j ). For orthotropic ma- 

terials with three mutually perpendicular planes of symmetry, only 

six constants are needed in tensor A ( Hill, 1948 ), while for trans- 

versely isotropic materials, the number of constants will reduce to 

five, as shown by Tagarielli and Deshpande ( Tagarielli et al., 2005 ). 
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