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a b s t r a c t 

In recent research on Structural Health Monitoring (SHM) guided waves, especially nonlinear Lamb waves, 

turned out to be a suitable means for monitoring material deterioration in thin-walled structures. In the 

corresponding numerical simulations on wave propagation the nonlinear elastic theory by Murnaghan is 

often implemented, which requires 14 material parameters for transversely isotropic materials. Enhanc- 

ing an existing linear strain energy potential, a new nonlinear hyperelastic transversely isotropic material 

model is introduced which reduces the number of independent material parameters to six. In order to 

verify the applicability of the presented material model with respect to the simulation of nonlinear wave 

propagation in composite structures, and the generation of higher harmonic wave modes, the existence 

of a power flux from the fundamental to the higher harmonic mode is investigated analytically and nu- 

merically. Analytical considerations show that this power flux exists like in Murnaghan’s theory. For the 

numerical validation the S 0 –S 0 mode pair in the low frequency range is used. Therefore, the amplitude 

of the second harmonic wave mode is oscillating with increasing propagation distance. This behavior is 

in excellent agreement with the theoretical prediction. It is shown further, that even for an oscillating 

behavior the amplitude of the second harmonic mode can be approximated by a linear curve fit over 

a considerably propagation distance and hence shows a quasi cumulative behavior. Therefore, the in- 

troduced material model is an advantageous alternative to Murnaghan’s theory to simulate the second 

harmonic Lamb wave generation due to in composite structures. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

In carbon fiber reinforced polymers (CFRP) fatigue damage 

starts at an early stage of lifetime ( M. Kaminski et al., 2015 ). The 

micro-structural damage is growing during operation and may fi- 

nally lead to a catastrophic structural failure ( Harris, 2003 ). There- 

fore, the monitoring of composite material is essential even at 

an early stage. The observation of piezoelectrically excited Lamb 

wave with simultaneous generation of the second harmonic mode 

due to structural nonlinearity has proven to be an adequate tech- 

nique. The detection of micro-structural damage was experimen- 

tally investigated mainly for isotropic material as presented in 

Bermes et al. (2007) ; Pruell et al. (2007) ; Pruell et al. (2009) ; 

Xiang et al. (2012) and Xiang et al. (2015) but also for compos- 

ite structures ( Li et al., 2012; Rauter and Lammering, 2015; Rauter 

et al., 2016 ). In general, the amplitudes of second harmonic modes 

are very small and hence, they subside very quickly. In order to 

overcome this shortcoming and to ensure an accurate extraction 
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of the second harmonic amplitude the waves should be excited at 

a frequency at which a cumulative effect takes place ( Deng, 1999; 

2003; de Lima and Hamilton, 2005; Chillara and Lissenden, 2014; 

2016; Müller et al., 2010 ), so that the second harmonic mode am- 

plitude is linearly growing along the propagation distance. 

To verify the experimental investigations and to analyze the 

further potential of this method numerical simulations are es- 

sential. Two different analytic descriptions for the second har- 

monic Lamb wave generation in thin-walled structures exist. In 

Deng (1999,2003) the method of nonlinear acoustic reflection at 

an interface and a modal analysis approach with a second-order 

perturbation approximation are introduced. It was found that the 

amplitude of the second harmonic mode grows linearly with the 

propagation distance, if the phase velocity of the primary and the 

second harmonic mode coincide. The second model presented in 

de Lima and Hamilton (2005) is based on the normal mode expan- 

sion technique and the reciprocity relation by Auld (1973) ; 1990 ). 

Beside the matching of the phase velocities a power flux condition 

is considered necessary for the existence of the secondary wave 

field. The power flux condition has been analyzed in more detail 

in Chillara and Lissenden (2014) , Chillara and Lissenden (2016) and 
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Müller et al. (2010) and numerical simulations for isotropic mate- 

rial are given in Liu et al. (2013c ); 2013b ), confirming the cumu- 

lative effect in case of matching phase velocities. However, if the 

phase velocities do not coincide the second harmonic amplitude 

shows oscillating behavior with the propagation distance, which 

can be described by a spatial periodicity. In Wan et al. (2016) it 

is shown that for an oscillating behavior of the amplitude a propa- 

gation distance can be determined for which the oscillating second 

harmonic amplitude can be approximated by a linear function and, 

therefore, shows a linear growth effect. 

For the numerical simulation and the analytic description the 

nonlinear elastic theory by Murnaghan (1951) is used as material 

model so far. This hyperelastic nonlinear material model is based 

on a strain potential given by a third order Taylor series expansion 

( Blackburn, 1981 ). For isotropic material three third order elastic 

constants l, m, n ( Murnaghan, 1951 ) and A, B, C ( Landau and Lif- 

shitz, 1959 ), respectively, describe the nonlinear material behavior 

beside two parameters from the linear theory of elasticity. These 

nonlinear material parameters represent the influence of mechani- 

cal stresses on the wave speed ( Prosser, 1987 ). An extension of this 

material model to unidirectional and orthotropic material is given 

in Prosser (1987) and was recently successfully used to simulate 

the cumulative second harmonic Lamb wave generation in com- 

posite structures ( Zhao et al., 2016 ). However, the nonlinear behav- 

ior of transversely isotropic material requires 14 material constants 

in total, five linear (second order stiffness coefficients) and nine 

nonlinear parameters (third order stiffness coefficients). Further- 

more, due to their physical meaning, the determination of the non- 

linear constants is very complex. Therefore, a new approach is pre- 

sented in this study to simulate the second harmonic Lamb wave 

generation in unidirectional composite structures reducing the re- 

quired amount of nonlinear material parameters. 

Most of the established nonlinear material models for fiber 

reinforced composites represent biological tissue and, therefore, 

are based on the assumption of incompressibility. One example is 

the well-known Holzapfel-Gasser-Ogden model ( Holzapfel, 2010 ) 

which is implemented in commonly used FE software by using 

the modified invariants. However, these formulations are not suit- 

able for modeling composite structures, because in this case trans- 

versely isotropic material is described by only four independent 

material parameters ( Vergori et al., 2013 ). This does not match 

with the linear description, which requires five independent coef- 

ficients. Hence, a new hyperelastic nonlinear transversely isotropic 

material model is introduced, which requires only six material pa- 

rameters (five linear and one nonlinear) instead of 14 (five linear 

and nine nonlinear) for the nonlinear elastic theory to simulate the 

generation of second harmonic waves in composite structures. The 

obtained constitutive equation is able to describe the relevant fea- 

tures of nonlinear wave propagation in elastic solids even though 

same effects are not covered, e.g. the generation of longitudinal 

waves as second harmonics from shear waves. Therefore, first the 

strain energy potential is established and the power flux condi- 

tion is evaluated analytically by using the procedure presented in 

Chillara and Lissenden (2016) and Müller et al. (2010) . In a second 

step first the material model is validated by static and dynamic 

tests. Finally, the power flux condition is analyzed numerically by 

studying the behavior of the amplitude of second harmonic wave 

modes over the propagation distance. 

The structure of this paper is as follows. Section 2 gives a 

brief overview of the theoretical foundation of hyperelastic mate- 

rial models and the nonlinear wave propagation. In Section 3 , the 

approach for a nonlinear hyperelastic transversely isotropic mate- 

rial model is presented. Furthermore, the power flux condition is 

analyzed. After the validation in Section 4 the second harmonic 

mode generation is numerically simulated in Section 5 . There- 

after, the representation of the nonlinear behavior is investigated 

in Section 6 . Finally, Section 7 gives a summary and a conclusion 

of the presented work. 

2. Theoretical foundation 

2.1. Hyperelastic material models 

For hyperelastic materials the stress state is assumed to be 

independent of the load path and thus solely determined by 

the strain state. Therefore, a potential function � exists, which 

is called strain energy function. For isotropic material it can be 

written as a function of the principal strain invariants I 1 , I 2 , I 3 
which can be expressed by the principal stretches λ1 , λ2 , λ3 , see 

( Malvern, 1969 ). The latter are commonly used in continuum me- 

chanics and in context with the finite element method. 

2.1.1. Basic equations 

In the following, the right Cauchy-Green tensor 

C = F � · F (1) 

is used as a rotation-independent deformation tensor obtained 

from the deformation gradient F . This deformation tensor has 

three independent invariants for isotropic material behavior 

( Malvern, 1969 ) 

I 1 = tr C I 2 = 

1 

2 

[(
tr C 

2 
)

− tr ( C ) 
2 
]

I 3 = det C . (2) 

In the case of transversely isotropic material, five invariants exist 

due to the dependence of the strains on the fiber orientation. In 

addition to the above mentioned invariants two pseudo invariants 

are defined which are given by Spencer (1984) 

I 4 = a 0 · C · a 0 and I 5 = a 0 · C 

2 · a 0 , (3) 

where a 0 is the vector of the fiber direction. 

Based on the energy function � the second Piola-Kirchhoff

stress tensor S and the stiffness tensor C are obtained by 

S = 2 

∂�

∂C 

and C = 4 

∂ 2 �

∂C 

2 
, (4) 

respectively. The derivatives of the invariants with respect to the 

right Cauchy-Green tensor are calculated as 

∂ I 1 
∂C 

= I 
∂ I 4 
∂C 

= a 0 � a 0 

∂ I 2 
∂C 

= I 1 I − C 

∂ I 5 
∂C 

= a 0 · C � a 0 + a 0 � C · a 0 

∂ I 3 
∂C 

= I 3 C 

−1 . 

Furthermore, due to the symmetry of C the derivates of C and C 

−1 

with respect to C are given by Kaliske (20 0 0) 

∂C 

∂C 

= I 
s = 

1 

2 

(
δik δl j + δil δ jk 

)
e i � e j � e k � e l , (6) 

∂C 

−1 

∂C 

= −1 

2 

(
C 

−1 
ik 

C 

−1 
l j 

+ C 

−1 
il 

C 

−1 
jk 

)
e i � e j � e k � e l . (7) 

2.1.2. Linear transversely isotropic hyperelastic material model 

A strain energy function which represents linear transversely 

isotropic material behavior can be formulated by use of the 

five invariants of C . In terms of the Green-Lagrange strain 

tensor E = 

1 
2 (C − I ) this strain energy function is given by 

Reese et al. (2001) 

�E = 

1 

2 

λ( tr E ) 2 + μT tr E 

2 + α(aEa ) tr E 

+ 2(μL − μT )(aE 

2 a ) + 

1 

2 

β(aEa ) 2 , (8) 
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