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a b s t r a c t 

Shape memory alloys, notably NiTi, often exhibit softening pseudoelastic response that results in for- 

mation and propagation of Lüders-like bands upon loading, for instance, in uniaxial tension. A common 

approach to modelling softening and strain localization is to resort to gradient-enhanced formulations 

that are capable of restoring well-posedness of the boundary-value problem. This approach is also fol- 

lowed in the present paper by introducing a gradient-enhancement into a simple one-dimensional model 

of pseudoelasticity. In order to facilitate computational treatment, a micromorphic-type regularization 

of the gradient-enhanced model is subsequently performed. The formulation employs the incremental 

energy minimization framework that is combined with the augmented Lagrangian treatment of the re- 

sulting non-smooth minimization problem. A thermomechanically coupled model is also formulated and 

implemented in a finite-element code. The effect of the loading rate on the localization pattern in a NiTi 

wire under tension is studied, and the features predicted by the model show a good agreement with 

the experimental observations. Additionally, an analytical solution is provided for a propagating inter- 

face (macroscopic transformation front) both for the gradient-enhanced model and for its micromorphic 

version. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Due to their unique thermomechanical properties, shape mem- 

ory alloys (SMAs) have gained wide applicability in engineer- 

ing and medicine and thus attract significant research interest 

( Otsuka and Wayman, 1999 ). The underlying effects, notably pseu- 

doelasticity and shape memory effect, result from the marten- 

sitic phase transformation and are accompanied by formation 

and evolution of martensitic microstructures at several scales 

( Bhattacharya, 2003 ). Numerous constitutive models have been de- 

veloped to address various aspects of the complex behaviour of 

SMAs, from the atomistic to the macroscopic scale. A detailed 

overview of the constitutive models of SMAs available in the lit- 

erature is beyond the scope of this paper, the reader is referred 

to recent reviews (e.g., Patoor et al., 2006; Lagoudas et al., 2006; 

Cisse et al., 2016 ). 

It is commonly observed in the experiments that stress-induced 

pseudoelastic response of SMAs is accompanied by softening be- 

haviour and strain localization. A typical example is the uniax- 
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ial tension of NiTi wires, strips and tubes (e.g., Shaw and Kyri- 

akides, 1997; Sittner et al., 2005; Pieczyska et al., 2006; Favier 

et al., 2007; Daly et al., 2007; Zhang et al., 2010; Sedmák et al., 

2016 ) in which transformation proceeds through nucleation and 

propagation of macroscopic transformation fronts so that the de- 

formation pattern resembles Lüders bands. At low loading rates, 

i.e. in nearly isothermal conditions, the fronts propagate at an ap- 

proximately constant load, thus a stress plateau is observed on the 

apparent stress–strain curve. A detailed study of the effect of the 

loading rate on the pattern of Lüders-like bands and on stress hys- 

teresis in NiTi strips has been reported by Zhang et al. (2010) . Lo- 

calized deformation has been observed also in NiTi tubes under 

combined tension–torsion loading ( Sun and Li, 2002 ) and under 

pure bending ( Bechle and Kyriakides, 2014; Jiang et al., 2017a ). 

The typical mechanical response exhibiting a stress plateau is 

often incorrectly interpreted as the material response, while it is 

in fact the response of a specimen, which is related to nucleation 

and propagation of macroscopic transformation fronts. The actual 

material response involves softening, sometimes significant, which 

however cannot be directly observed due to localization phenom- 

ena. This has been very clearly illustrated by the careful experi- 

ment of Hallai and Kyriakides (2013) , in which the intrinsic soft- 

ening response of NiTi has been revealed by extracting it from the 
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overall response of a uniformly deforming laminate composed of 

NiTi and steel sheets, the latter exhibiting a hardening elastoplas- 

tic response. 

Implementation of the softening behaviour into a constitutive 

model usually does not constitute a difficulty. However, solution 

of the resulting boundary value problem is not immediate be- 

cause the problem becomes ill-posed, which leads, for instance, to 

pathological mesh sensitivity. One way to regularize the problem 

is to enhance the model with non-local ( Ahmadian et al., 2015 ) 

or gradient terms ( Chang et al., 2006; Duval et al., 2011; Armat- 

toe et al., 2014; Badnava et al., 2014; Alessi and Bernardini, 2015; 

León Baldelli et al., 2015 ). This introduces a characteristic length 

into the model so that diffuse transformation fronts are formed 

and a sharp transition from the transformed to non-transformed 

zone is penalized. 

Note that a kind of regularization, which has a clear physical 

basis, is introduced by including the thermomechanical coupling 

and heat conduction. However, this regularization may be insuffi- 

cient in nearly isothermal conditions, for instance, in the case of 

propagation of an existing macroscopic transformation front at a 

vanishingly small speed. 

Interestingly, finite-element simulations of strain localization 

and Lüders-like bands in SMA strips and tubes under tension 

and tubes under bending have been successfully carried out by 

Jiang et al. (2017a–c) using an isothermal, plasticity-like soften- 

ing model with no regularization. A mild mesh dependency of the 

results has been observed, which can be explained by the three- 

dimensional through-thickness effects ( Mazière and Forest, 2015 ). 

In this work, a gradient-enhancement is introduced into a 

simple one-dimensional model of pseudoelasticity in SMAs. The 

starting point here is a one-dimensional small-strain version 

of the model of pseudoelasticity developed by Stupkiewicz and 

Petryk (2013) , however, the approach is general and can be applied 

to virtually any macroscopic model, including extension to a three- 

dimensional model. The main focus of this work, and its origi- 

nal contribution, is a micromorphic regularization of the gradient- 

enhanced model and its energy-based incremental formulation. To 

this end, a new degree of freedom is introduced into the model 

that can be interpreted as a micromorphic counterpart of the vol- 

ume fraction of martensite. The micromorphic approach adopted 

here is similar to that of Mazière and Forest (2015) that has been 

developed for modelling of softening–hardening plasticity leading 

to formation of Lüders bands in metals. The resulting micromor- 

phic model is suitable for a direct finite-element implementation 

based on the incremental energy minimization approach combined 

with the augmented Lagrangian treatment of the resulting non- 

smooth minimization problem. An analytical solution is also pro- 

vided for a propagating phase transformation interface (macro- 

scopic transformation front) both for the gradient-enhanced model 

and for the micromorphic one. Finally, a thermomechanically cou- 

pled model is formulated and implemented in a finite-element 

code. Using this model, uniaxial tension of a NiTi wire is simulated, 

and the effect of loading rate on the localization pattern is studied. 

The results obtained show a good agreement with the experiment. 

2. One-dimensional model of pseudoelasticity 

In order to concentrate on the most essential features, i.e. on 

the gradient enhancement and its micromorphic regularization, the 

model discussed in this paper is restricted to one-dimensional 

pseudoelastic response in tension at small strain. A sequence of 

isothermal models is discussed first, starting from a local model, 

through its gradient-enhanced version, to finally arrive at a mi- 

cromorphic model. Subsequently, the most essential thermome- 

chanical coupling terms are accounted for, thus leading to a cou- 

pled thermomechanical model. The isothermal local model dis- 

cussed below is essentially a one-dimensional version of the gen- 

eral three-dimensional model of Stupkiewicz and Petryk (2013) . 

Despite the model is one-dimensional, in the notation we will 

use ∇ and ∇ · to denote the gradient and divergence, respectively, 

so that the structure of the model resembles that of the corre- 

sponding three-dimensional model to be developed in the future. 

Clearly, in one-dimension, the two operations reduce to the usual 

spatial derivative. 

2.1. Local model 

The total strain ε = e (u ) , where e (u ) = ∇u and u denotes the 

displacement, is decomposed into its elastic εe and inelastic (trans- 

formation) εt parts, 

ε = ε e + ε t , ε t = ηε̄t , 0 ≤ η ≤ 1 , (1) 

where η denotes the volume fraction of martensite, and ε̄t is a 

model parameter. Here, we rely on the assumption that, in the 

pseudoelastic regime, martensite is fully oriented, and ε̄t is its 

transformation strain. Since only tension is considered, we have 

ε̄t > 0 . 

The function specifying the Helmholtz free energy (per unit vol- 

ume) in isothermal conditions is adopted in the following form (cf. 

Stupkiewicz and Petryk, 2013 ), 

φ(ε, η) = φ0 + �φ0 η + 

1 

2 

E(ε − ηε̄t ) 
2 + 

1 

2 

Hη2 , (2) 

where φ0 is the free energy of austenite in a stress-free state, �φ0 

is the chemical energy, E is the Young’s modulus, and H is the pa- 

rameter controlling the hardening or softening associated with in- 

creasing η. We assume here that H is non-negative, H ≥ 0, because 

for H < 0 a softening response is obtained, as shown later, and the 

problem is then ill-posed. A negative hardening parameter will be 

admitted in the gradient-enhanced model discussed in Section 2.2 . 

The Helmholtz free energy functional �[ u, η] is obtained by in- 

tegrating φ over the body domain B , 

�[ u, η] = 

∫ 
B 

φ(e (u ) , η) d V, (3) 

and the potential energy is defined as 

E[ u, η] = �[ u, η] + �[ u ] , (4) 

where �[ u ] is the potential energy of external loads, which are 

assumed conservative. 

In the incremental (finite-step) formulation, the rate- 

independent dissipation is governed by the following dissipation 

potential, 

�D (�η) = f c | �η| , f c > 0 , �η = η − ηn , (5) 

and its global counterpart, 

�D[ η] = 

∫ 
B 

�D (η − ηn ) d V, (6) 

where f c is the critical driving force, and ηn is the martensite vol- 

ume fraction at the end of the previous step. Note that quantities 

without a subscript refer to the current time instant t = t n +1 . 

The incremental solution, i.e. the fields of displacement u and 

volume fraction η at the current instant t n +1 , are determined 

by minimization of the global incremental potential 	[ u, η] (cf., 

Petryk, 2003; Stupkiewicz and Petryk, 2013 ), 

{ u, η} = arg min 

u,η
	[ u, η] , (7) 

where 

	[ u, η] = E[ u, η] − E[ u n , ηn ] + �D[ η] + I[ η] , (8) 
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