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a b s t r a c t 

Sliding cable structures are systems where cables experience a relative sliding motion with other struc- 

tural elements. The variety of structural systems using sliding cables led to a great diversity and scatter- 

ing of the modeling approaches. This paper presents original developments expanding and generalizing 

the existing works and proposes a multi-node sliding cable model accounting for friction, with a general 

dynamic formulation, an effective numerical implementation and applicability to various material behav- 

iors. General sliding equations are formulated, along with the unstretched length conservation constraint. 

Closed-form expressions of the Newton–Raphson scheme are developed to solve the sliding equations 

analytically while enforcing the conservation constraint. The formulation and its implementation are val- 

idated against a theoretical dynamic sliding cable mechanism and simulation results agree perfectly with 

the analytical solutions. The model is used to perform a parametric study of a complex system of sliding 

cables under dynamic loading. These simulations highlight the influence of the investigated parameters 

and prove the robustness and versatility of the proposed model over the existing ones from the literature. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Cable systems are widespread in civil engineering and mechan- 

ical structures such as bridges, guyed structures, catenaries and 

power lines ( Irvine, 1981 ). One of the main advantages of cables 

resides in their combination of high strength, lightness and flex- 

ibility. Cables can easily redirect and modify tensions in lifting 

machines thanks to pulley systems, they can also balance forces 

in supporting and suspension structures by allowing for changes 

in their geometry and mass distribution. In these systems, cables 

experience relative sliding motion with other structural elements 

such as pulleys, drums or sliding components. Specific studies of 

these sliding cables have been performed for various engineering 

applications such as electrical transmission lines ( Aufaure, 1993, 

20 0 0 ), cranes and suspended cable systems ( Dupire et al., 2015; 

Ju and Choo, 2005; Wang and Rega, 2010 ), suspended roofing sys- 

tems ( Chen et al., 2010; Hincz, 2009 ) and tensioned fabric mem- 

branes ( Dinh et al., 2016; Pargana et al., 2010 ), protection struc- 

tures ( Boutillier, 2004; Ghoussoub, 2014; Nicot et al., 2001; Volk- 

wein, 2005 ) and parachute systems ( Zhou et al., 2004 ). These dif- 

ferent works all address the mechanics of cables passing through 
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pulleys or of sliding elements traveling along cables, but the scope 

of each of these studies is limited to some areas of analysis. The 

numerous approaches make different assumptions and use differ- 

ent formulations regarding four principal characteristics of sliding 

cables: the number of consecutive sliding elements, the account of 

friction, the type of analysis (static or dynamic) and the constitu- 

tive behavior of the cable material. 

Many of the existing works are concerned with the sliding of a 

single element and use a 3-node model for that purpose: a central 

sliding node comprised between two end nodes. That is the case 

of the FEM models of Aufaure (1993, 20 0 0) and Zhou et al. (20 04) , 

as well as the ’sliprings’ elements of the LS-DYNA software 

( LSTC, 2006 ). The models proposed by Aufaure (1993, 20 0 0) only 

allow sliding bounded between the 2 end nodes while the other 

models ( LSTC, 2006; Zhou et al., 2004 ) suggest remeshing algo- 

rithms to allow continuous sliding on longer distances. To treat 

longer cable spans with multiple rest or lift points, multi-node 

models have been developed, in particular by Boutillier (2004) , 

Chen et al. (2010) , Ghoussoub (2014) , Hincz (2009) , Ju and 

Choo (2005) and Volkwein (2005) . Such models provide effective 

and integrated formulations for systems containing multiple sliding 

nodes instead of using an assembly of several single-node models. 

Whether single-node or multi-node, the previously introduced 

models do not all account for friction between the cable and slid- 

ing elements. The 3-node models from Aufaure (1993, 20 0 0) and 

Zhou et al. (2004) as well as the multi-node models from 
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( Chen et al., 2010 ) and Ghoussoub (2014) assume uniform tension 

over the cable, resulting in a frictionless and permanent motion 

of the sliding nodes along the cable. Studies focusing on belts and 

pulleys almost always account for friction ( Childs, 1980; Raviku- 

mar and Chattopadhyay, 1999 ) and Ju and Choo (2005) , as well as 

Dupire et al. (2015) , also argue that when applied to sliding ca- 

bles, frictionless models can yield unrealistic and incorrect results. 

The account of friction appears to be critical and largely conditions 

the complexity of the modeling. Friction induces differences in ten- 

sions on each side of a sliding node. Models accounting for friction 

make different assum ptions and use various numerical methods 

to treat it. Volkwein (2005) uses the uniform tension assumption 

around sliding nodes before applying a tension reduction on one 

side to account for friction. This method is simple and efficient but 

does not provide a realistic distribution of tensions in the cable. 

Most models accounting for friction consider non-uniform tension 

on both sides of sliding nodes and use a sliding criterion, based 

on a sliding function, to determine whether the nodes stick or slip. 

When the sliding function exceeds a given limit, sliding occurs and 

tensions are balanced through a given sliding mechanism in order 

to match the sliding limit. 

Different sliding criteria can be found ( Boutillier, 2004; Hincz, 

20 09; Ju and Choo, 20 05 ) as well as different numerical resolution 

schemes. For single-node models, usual root-finding algorithms can 

be used. For multi-node models, different strategies exist. Ju and 

Choo (2005) build a cable super-element considering slip around 

sliding nodes as a part of the elastic deformation of the adjacent 

sub-elements. Hincz (2009) uses a fixed step relaxation algorithm, 

thus avoiding the formulation of a multivariate system of equations 

to be solved. This light and compact formulation suffers from a 

great computational cost and potential excesses of the sliding limit 

due to the fixed step search. Boutillier (2004) defines a linearized 

multivariate problem that shows better performances but can only 

be applied for static or quasi-static analyses. 

In general, existing models are developed for either static or dy- 

namic analyses. Most of the existing models are only formulated 

for statics ( Aufaure, 1993; 20 0 0; Chen et al., 2010; Dinh et al., 

2016; Dupire et al., 2015; Ju and Choo, 2005; Nicot et al., 2001; 

Wang and Rega, 2010 ). Some are developed for specific non-linear 

static applications by means of low-speed dynamic ( Boutillier, 

2004; Ghoussoub, 2014 ) and dynamic relaxation ( Hincz, 2009 ) al- 

gorithms. Fewer works are dedicated to dynamic problems ( LSTC, 

2006; Volkwein, 2005; Zhou et al., 2004 ). 

As for the cable material properties, all of the existing slid- 

ing cable models, except from LSTC (2006) that is used in 

Erhart (2012) with Hill’s muscle model, are formulated for linear 

elastic material only. This assumption is often built-in the math- 

ematical formulation of the models. It may also be a mandatory 

condition for the resolution method to function properly, thereby 

limiting the potential applications of such models to a more real- 

istic, non-elastic and non-linear cable material behavior. 

None of the previously introduced developments present the 

modeling capabilities to combine these four properties (multi- 

node, friction, dynamic analysis and general constitutive behavior 

of the cable material) altogether. In this article, a unified sliding 

cable model is proposed. This model aims at expanding the vari- 

ous existing approaches and consists of a multi-node sliding cable 

accounting for friction, with a general dynamic formulation, an ef- 

fective numerical implementation and applicability to various ma- 

terial behavior. First, the mechanical concepts and the mathemat- 

ical formulation for the dynamic sliding problem are introduced. 

The multi-node sliding equations derived from this mathematical 

analysis are solved under a conservation constraint using an an- 

alytically formulated Newton–Raphson scheme that ensures both 

respect of the constraint and computational efficiency. The model 

is then validated against the analytical solutions of a highly non- 

linear dynamic system. Eventually, applications to the modeling of 

the ‘curtain effect’, a complex dynamic sliding process taking place 

in flexible protection structures, is conducted to investigate the full 

capabilities of the model. 

2. General sliding cable formulation 

2.1. Definition of the sliding cable system 

The cable is defined as a set of consecutive segments that can 

be fully described by the position of the segment vertices, which is 

a set of ordered nodes located at the end points of the segments. 

The nodes are broken down into two types: sliding nodes and non- 

sliding nodes ( Fig. 1 ). Non-sliding nodes can represent either dis- 

cretization nodes of the cable matter itself or elements firmly an- 

chored to the cable, there is no relative motion between the ca- 

ble and non-sliding nodes. As a result, the arrangement of non- 

sliding nodes along the cable is invariable. The two end nodes of 

sliding cables must be non-sliding nodes. Sliding nodes represent 

external elements either free to move along the cable or around 

which the cable moves, there is a relative sliding motion between 

the cable and sliding nodes. Such sliding elements can represent 

pulleys, drums, shackles or any external element having a rela- 

tive sliding motion with the cable. Assuming that these elements 

cannot go past each other, the arrangement of successive sliding 

nodes along the cable is also invariable. The overall arrangement of 

all the nodes may however change. Sliding nodes may experience 

continuous sliding over several segments, thereby going over non- 

sliding discretization nodes and modifying the order of the con- 

secutive nodes. These permutations in the consecutive order of the 

nodes must be performed by remeshing algorithms as discussed in 

the introduction. 

Stress and strain are constant over each segment. The uniax- 

ial strain ε is expressed in terms of the current length l and un- 

stretched length l 0 of a segment using Cauchy strain as ε = (l −
l 0 ) /l 0 . The expression of the stress σ depends on the constitutive 

relation used for the cable material behavior. Tension in the seg- 

ments is preferred over stress for convenience in structural appli- 

cations. Assuming a constant cross-section surface area A , tension 

can be expressed as T = σA ≥ 0 . Tension must remain positive as 

the cable is considered unable to resist axial compression forces. 

2.2. Sliding criterion and mechanism 

Considering a perfectly flexible circular arc of cable subject to 

tensions T A and T B at its ends such as T B ≥ T A ≥ 0 and to friction 

along the arc length ( Fig. 2 ), the static equilibrium of the cable 

yields the capstan equation ( Childs, 1980 ) 

T B − T A e 
μα = 0 (1) 

where μ is the friction coefficient between the cable and the cir- 

cular element and α is the total wrap angle. The assumption that 

cables are perfectly flexible theoretically limits the validity of the 

capstan equation to cables with small flexural rigidity and large 

curvature. For smaller curvature, the assumption of a perfectly flex- 

ible cable remains acceptable when the wrap angle is limited. In 

practice, mechanical systems using cables bent with small curva- 

ture and large wrap angles are designed so that the cables are flex- 

ible enough to operate without resisting extensive bending. Modi- 

fications of the capstan equation to account for flexural rigidity of 

the cable can be made ( Jung et al., 2008 ) but are not of interest 

herein. 

Eq. (1) defines the sliding limit that corresponds to the limit 

state equilibrium, meaning that no value of T A and T B can verify 

T B − T A e 
μα > 0 . The sliding function can then be defined as: 

S(T A , T B ) = T B − T A e 
μα ≤ 0 (2) 
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