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a b s t r a c t 

A peridynamic (PD) implementation of crystal plasticity with an adaptive dynamic relaxation method is 

presented. Non-ordinary state-based peridynamics and the Newmark’s dynamic method with artificial 

damping are employed to capture strain localizations in polycrystalline microstructures based on a rate- 

independent crystal plasticity model. Numerical simulations for planar polycrystals are conducted under 

plane strain pure shear and compression, respectively. The computational efficiency of the explicit PD 

model is demonstrated to be superior to an implicit PD model for modeling crystal plasticity. The stress 

field distribution, texture formation, and homogenized stress-strain response predicted by the finite ele- 

ment method and the new dynamic PD model are compared. Finer localization bands are observed in the 

latter model. The origin and evolution of these shear bands are studied by PD simulations during defor- 

mation of three polycrystals with different orientation distributions. Emphasis is placed on the accuracy 

and efficiency of the adaptive dynamic relaxation method working with crystal plasticity PD models. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Modeling mechanical behaviors of advanced alloys applied 

in industrial applications is a persistent and active challenge 

( Ramazani et al., 2016; Abuzaid et al., 2013; Sun and Sundararagha- 

van, 2014 ). One popular numerical model for polycrystalline ma- 

terials is the crystal plasticity finite element (CPFE) model ( Sun 

and Sundararaghavan, 2014; Roters et al., 2010; Anand and Kothari, 

1996 ) which provides a link between the dislocation-level physics 

and macro-scale continuum response ( Lim et al., 2015 ). In CPFE 

models, grains are discretized into finite elements where the crys- 

tal plasticity formulations are applied to compute mechanical re- 

sponses (e.g., stress and strain), crystallographic slip, and reorien- 

tation of grains (texturing) at the grain scale ( Lim et al., 2015; Rot- 

ers et al., 2011 ). However, it is difficult for CPFE models to properly 

predict strain localizations, in the form of fine shear bands, which 

have been observed by number of recent experiments ( Chen et al., 

2017; Khadyko et al., 2016; Pokharel et al., 2014; Kammers and 

Daly, 2013; Guery et al., 2016 ). An example of shear band forma- 

tion in a polycrystal is shown in Fig. 1 . The size of shear bands and 

magnitude of shear computed by standard finite element methods 
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are highly determined by the element size used in the discretiza- 

tion ( Pokharel et al., 2014; Kuroda, 2011; Borst et al., 1993 ). 

Considering this disadvantage of CPFE models, different ap- 

proaches such as non-local constitutive models Evers et al. (2004) , 

higher-gradient models ( Menzel and Steinmann, 20 0 0 ), meshfree 

methods ( Li et al., 20 0 0 ) have been proposed. Peridynamics, in- 

troduced as an alternative integral formulation for continuum me- 

chanics ( Silling, 20 0 0 ), is a particle-based approach capable of han- 

dling the formation and propagation of discontinuities. This non- 

local method, represented by a set of interacting particles, cal- 

culates strain at a particle by tracking the motion of surround- 

ing particles. A generalized state-based PD model was later pro- 

posed by Silling et al. (2007) , in which forces between particles 

are found using stress tensors obtained from classical constitutive 

formulations, such as crystal plasticity theory. Recent results based 

on a crystal plasticity peridynamic (CPPD) model with an im- 

plicit Newton–Raphson solver have shown advantages of capturing 

finer shear bands in planar polycrystals ( Sun and Sundararagha- 

van, 2014 ). 

Implicit methods are traditionally favored compared to ex- 

plicit dynamic methods for their accuracy at larger time steps 

( Harewood and McHugh, 2007 ). However, for crystal plasticity, the 

computation cost of calculating the tangent modulus matrix is high 

( Roters et al., 2010 ). Hence, the new contribution of this paper is a 

fully explicit implementation of state-based peridynamics for mod- 

eling quasi-static deformation of polycrystals. An adaptive dynamic 
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Fig. 1. Tensile strain maps of a magnesium alloy microstructure for two different heat treatments. Experiment data is obtained using the micro-scale digital image correlation 

technique ( Kammers and Daly, 2013 ). Fine shear bands due to strain localizations are observed in (a). 

relaxation method for quasi-static PD simulations as proposed by 

Kilic and Madenci (2010) is introduced, where an artificial damping 

ratio estimated from Rayleigh’s quotient is selected to dampen the 

system leading to a steady-state solution. The critical time step is 

approximated by a numerical analysis of hyperbolic partial differ- 

ential equations. Accuracy and effectiveness of this new dynamic 

CPPD model will be demonstrated with numerical examples. 

Although peridynamics has been proven powerful in predict- 

ing discontinuities and damages ( Madenci and Oterkus, 2014; Ger- 

stle, 2015 ), it still has some intrinsic numerical issues, among 

which are zero-energy modes and non-trivial treatment of bound- 

ary conditions ( Breitenfeld et al., 2014; Tupek and Radovitzky, 

2014; Wu and Ben, 2015 ). Recently, different techniques have 

been applied. For instance, artificial forces are introduced to re- 

duce spurious modes ( Breitenfeld et al., 2014 ); a stabilized PD 

formulation with mixed local and nonlocal gradient approxima- 

tions by Wu and Ben (2015) to enhance essential boundary con- 

ditions. Moreover, a peridynamic differential operator extending 

high-order derivatives to their nonlocal forms has been lately pro- 

posed by Madenci et al. (2016) . Nevertheless, no uniform and stan- 

dard scheme is employed coefficients or formulations are chosen 

on a case-by-case basis. With respect to the PD stability issues, 

simulations in this paper will mostly adopt the smallest horizon 

radius to better compare with a continuum local CPFE formulation. 

One special case with an increased horizon length is conducted 

in a compression test to better analyze the effect of horizon size 

on characteristic microstructural length scales. Besides, quantities 

such as deformation gradients are adjusted for smaller horizons at 

boundary particles in our model. 

In the current work, we conduct simulations for planar poly- 

crystalline microstructures under plane strain pure shear and com- 

pression, respectively. The numerical efficiency of the explicit 

method is compared against the previously proposed implicit CPPD 

method ( Sun and Sundararaghavan, 2014 ) in the case of pure 

shear. The stress field distribution, texture formation, and ho- 

mogenized stress-strain response predicted by the classical CPFE 

model and the new dynamic CPPD model are compared after- 

wards. In addition, we perform compression tests of three poly- 

crystals with different orientation distributions to study the nature 

of localization bands identified from the dynamic CPPD method. 

Section 2 of this paper provides formulations of state-based peri- 

dynamics, the adaptive dynamic relaxation method, and their nu- 

merical discretization schemes. The crystal plasticity constitutive 

model and its numerical implementations are given in Section 3 . 

Section 4 compares planar simulations obtained by the explicit dy- 

namic CPPD model with CPFE results, to demonstrate the capability 

of the new model for capturing finer shear bands in grains. In the 
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Fig. 2. Kinematics of peridynamics: Particle x is bonded to all particles ( x ′ , x ′ ′ , and 

x ′ ′ ′ ) within a region H x . After deformation, particle x maps to particle y and the 

process can be described by an averaged deformation gradient F . T [ x ] = T [ x , t] 〈 x ′ −
x 〉 and T [ x ′ ] = T [ x ′ , t] 〈 x − x ′ 〉 are force vector states in the reference configuration 

at particle x and x ′ , respectively. In the non-ordinary state-based PD theory, these 

two force vector states are not necessarily parallel and can be obtained from the 

classical stress tensor. 

last section, a brief summary and some expectations for the future 

explicit dynamic CPPD model are discussed. 

2. Peridynamics with an explicit dynamic solver 

2.1. State-based peridynamics 

The state-based PD model is first presented by ( Silling et al., 

2007 ) in 2007, which is a nonlocal integral reformulation of the 

continuum theory. Consider a material point x in the reference 

configuration which can only interact with its neighboring points 

x ′ in a self-center horizon H x with a finite radius δ. Given a dis- 

placement field u , the current configuration is then represented by 

y = x + u . Let the initial physical domain be B 0 at time t = 0 while 

B 1 is the deformed domain (shown in Fig. 2 ). 

With the introduction of the deformation vector state Y = 

Y [ x , t] 〈 x ′ − x 〉 = y ′ − y , which denotes the deformed state of the 

bond ξ = x ′ − x , the deformation gradient F at particle x is refor- 

mulated as a nonlocal integration over the horizon: 

F = 

(∫ 
H x 

ω( Y � ξ ) dV x ′ 
)

K 

−1 , (1) 

where ω is an influence function defined at particle x in H x . It 

weights the influence of each neighbor x ′ on the particle x and 

can be selected as a spherical function based on the initial bond 

length, i.e., ω = ω(| ξ | ) . K is a symmetric shape tensor at particle 

x , defined as 

K = 

∫ 
H x 

ω(ξ � ξ ) dV x ′ . (2) 
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