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a b s t r a c t 

The steady-state displacements and moments in a Bernoulli–Euler beam of finite width and infinite ex- 

tent, resting on a poroelastic halfspace and subjected to a concentrated load moving at a constant ve- 

locity, were investigated using the concept of the equivalent stiffness of the halfspace. Expressions for 

the equivalent stiffness of the saturated poroelastic halfspace interacting with the infinite beam of finite 

width were derived analytically using a contour integration procedure. The influence of adhesion and 

drainage effects between the beam and the halfspace surface is accounted for by considering “bounding 

techniques” for prescribing the boundary conditions at the interface. Comparisons have been made be- 

tween situations for the elastic and poroelastic halfspace with regard to their equivalent stiffness and the 

dynamic responses of the beam for different velocities of the moving load. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

The analysis of the dynamic interaction between an elastic 

beam and ground is fundamental to the understanding of the 

dynamic behavior of railway tracks with the supporting subsoil 

under the action of high speed trains. This topic has attracted 

significant research effort during the past decades because of the 

ever-growing public concern over the noise and vibration pollution. 

Literature in rail track-ground dynamics can be divided into two 

categories: elastic soils and saturated poroelastic soils, according to 

whether the pore fluid is considered in the soil model. Filippov 

(1961) pioneered the research on vibrations of an infinite beam 

resting on an elastic halfspace subjected to a moving point load. 

Later, Labra (1975) investigated the effect of the axial compres- 

sive force on the critical velocity of the beam. By taking the con- 

tribution of each sleeper of the track into account, Krylov (1995, 

1996 ) investigated the ground vibrations generated by high speed 

trains. Kaynia et al. (20 0 0) developed a numerical model to pre- 

dict the vibrations induced in the railway embankment and the 

layered elastic ground by high speed trains. Sheng et al. ( 1999a,b, 

20 03, 20 04a,b ) have also conducted a series of theoretical investi- 

gations on the coupled vibrations of a layered elastic ground and 

the rail track, which is modeled as a layered beam structure, us- 
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ing the analytical solutions of the wave equations . Using the same 

approach, more specialized models have been proposed and solved 

by Takemiya and Bian (2005) to include the sleeper passing effect, 

by Karlstrom and Bostrom (2006) to consider the rectangular em- 

bankment and by Xia et al. (2010) to investigate the contribution 

of the vehicle components. Numerical techniques, such as the fi- 

nite element method ( Hall, 2003 ), the boundary element method 

( Galvin and Dominguez, 2007; Celebi and Schmid, 2005 ), or a com- 

bination of them ( Auersch, 2005a,b ), have also been frequently em- 

ployed to obtain the elastic ground vibrations due to the passage of 

a high speed train. For more articles on this topic, one is referred 

to the comprehensive review by Lombaert et al. (2015) . 

When there is ground water present, the pores between the 

soil skeleton can be completely saturated with water. A quasi-static 

theory of poroelasticity was developed by Biot (1941) (see also 

Selvadurai, 1996, 2007 ; Schanz, 2009 ; Cheng, 2015 ) and further 

improved by himself ( Biot, 1956 ) to take into consideration the 

dynamic effects of the soil-skeleton and pore-fluid phases. Using 

the dynamic theory of poroelasticity ( Biot, 1956 ), Cai et al. ( 2007, 

2008a,b, 2010 ) made significant contributions to the coupled vibra- 

tions of the railway track and the saturated poroelastic halfspace 

under the action of a high speed train. The dynamic response of 

saturated ground was found to be significantly different from that 

of the elastic ground when the train speed increased to greater 

than the critical velocity of the ground. 

The theoretical/numerical investigations cited above and the 

field experiments ( Madshus and Kaynia, 20 0 0; Lombaert et al., 

20 06; Lombaert and Degrande, 20 09 ) have revealed that large 
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dynamic amplifications appear in the track and ground as the train 

speed approaches an apparently critical value. This critical velocity 

of the track-ground system has been mathematically demonstrated 

by Dieterman and Metrikine (1996; 1997 ) using a highly-idealized 

model: the track structure is simplified as a Bernoulli–Euler beam 

with finite width and infinite extent, the ground is modeled as 

a homogeneous elastic halfspace and the train loading is repre- 

sented by a concentrated load of constant magnitude and veloc- 

ity. The equivalent stiffness of the elastic halfspace was first eval- 

uated using the contour integration method and then substituted 

into the governing equations of the beam, whose responses were 

obtained by a numerical Fourier inversion. Two critical velocities 

were found to exist in this model: the first is equal to the Rayleigh 

wave velocity of the halfspace, at which the equivalent stiffness of 

the halfspace becomes zero; the second is slightly smaller, which 

is generated due to dynamic interaction between the beam and the 

halfspace. By following the same procedure, these results were ex- 

tended by Kononov and Wolfert (20 0 0) to take into account the 

viscous properties of the elastic halfspace. Due to the energy dissi- 

pation caused by the viscosity, the equivalent stiffness is complex 

at the Rayleigh wave velocity; in this case, only the second critical 

velocity exists. 

A similar model has been employed by Jin (2004) and Xu 

et al. (2007) . After replacing the elastic halfspace by a saturated 

poroelastic one, they studied the displacement responses of the 

beam under different load velocities. The equivalent stiffness of the 

poroelastic halfspace was evaluated using the numerical Fourier in- 

version procedure along the real axis of the wavenumber, under 

the assumption that no Rayleigh poles or branch points of the in- 

tegrand are encountered. This assumption holds true when the soil 

permeability is low, since the high viscous coupling between the 

soil skeleton and the pore water renders the branch points and 

the Rayleigh pole complex-valued, and thus far away from the real 

axis of the wavenumber. However, when the permeability is high 

or in the extreme condition of infinite permeability, the Rayleigh 

pole and branch points would move closer to or be situated di- 

rectly on the real axis of the wavenumber. In this case the sum- 

mations involved in the numerical inversions may contain singu- 

larities, which would cause substantial oscillations to the resulting 

equivalent stiffness and thus make any evaluation of the beam re- 

sponse unreliable. Furthermore, the equivalent stiffness needs to 

be evaluated in a more rigorous fashion, for example, by using the 

contour integration method, so that the characteristics of the half- 

space dynamics can be established mathematically. 

In this study we present a mathematical formulation for the 

dynamic interaction problem of an infinite beam of finite width 

that is resting on a saturated poroelastic halfspace of infinite 

permeability and subjected to a concentrated load moving at 

a constant velocity. Four sets of boundary conditions, i.e., free 

draining-frictionless ( Case A ), impervious-frictionless ( Case B ), free 

draining-inextensible ( Case C ) and impervious-inextensible ( Case 

D ) boundary conditions, were prescribed over the entire surface of 

the poroelastic halfspace, respectively, to make the problem ana- 

lytically tractable. Firstly, the equivalent stiffness of the poroelastic 

halfspace was derived for the four cases using the method of con- 

tour integration. Then, the equivalent stiffness is substituted into 

the equilibrium equation of the Bernoulli–Euler beam to obtain the 

displacement and moment responses using the numerical Fourier 

inversion. Detailed comparisons were performed for the four cases 

and between the elastic- and poroelastic-halfspace solutions with 

regard to the equivalent stiffness of the halfspace and the dynamic 

response of the beam for different load velocities. It is mathemat- 

ically demonstrated that the first critical velocity, at which the 

equivalent stiffness vanishes, equals the Rayleigh wave velocity for 

Cases A and B , while it changes to the shear wave velocity for Cases 

C and D . The second critical velocity, which is due to the mechani- 

Fig. 1. Geometry of an infinite beam of finite width on a saturated poroelastic half- 

space of infinite permeability. 

cal coupling of the beam and the halfspace, is slightly smaller than 

the corresponding first critical velocity in each case. The critical 

velocities of the beam-elastic halfspace system are found to be 

smaller than those of the beam-poroelastic halfspace system. 

2. Problem formulation 

Fig. 1 shows the analysis model that consists of an infinite 

beam of finite width (2 a ) resting on the surface of a homogeneous 

poroelastic halfspace of infinite permeability. A moving constant 

load of amplitude F 0 and velocity c is applied to the center-line 

of the beam and acts vertical to the halfspace surface. The model 

is at rest initially and reaches a steady state when the load has 

been moving along the beam for a long time. 

2.1. Governing equations 

The beam experiences flexure only in the longitudinal direction 

and its flexural response is described by the Bernoulli–Euler beam 

theory 

EI 
∂ 4 w b 

∂ x 4 
+ m b 

∂ 2 w b 

∂ t 2 
+ δb 

∂ w b 

∂t 
+ q c (x , t) = F 0 δ(x − ct) (1) 

where w b is the beam deflection; EI is the bending rigidity of the 

beam section; m b is the mass of the beam per unit length; δb 

is the viscosity coefficient of the beam; q c is the unknown con- 

tact line force at the beam-halfspace interface acting along the 

center line of the beam, which has the dimension of [ M T −2 ] ; δ( 

· ) is the Dirac delta function and δ(x − ct) has the dimension 

of [ L −1 ] . The bending moment M b of the beam is determined by 

M b = −EI( ∂ 2 w b /∂ x 
2 ) . 

The dynamics of the saturated poroelastic halfspace governed 

by Biot’s theory ( Biot, 1956 ) take the forms 

μu i, j j + (λ + α2 M + μ) u j, ji + αM w j, ji = ρü i + ρf ẅ i (2) 

αM u j, ji + M w j, ji = ρf ̈u i + m ̈w i + b ˙ w i (3) 

The constitutive equations are 

σi j = λδi j θ + μ( u i, j + u j,i ) − αδi j p (4) 

p = −αM θ + M ς (5) 

where u i and w i ( i = x, y, z) are the soil skeleton displacement and 

the pore-fluid average displacement relative to the soil skeleton, 

respectively; the subscripts i, jj and j, ji denote that the tensor op- 

eration and the summation convention is applied; the dots over u i 
and w i indicate the difference with respect to time t; λ and μ are 

the Lamé constants of the soil skeleton; M and α are Biot’s param- 

eter accounting for the compressibility of the two phases; they are 
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