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a b s t r a c t 

A computationally efficient method is presented for static and dynamic analysis of a beam-like structure 

on a viscoelastic foundation with the unilateral contact constraint at their interface. The non-smooth 

dynamics of the system is modelled using the Euler–Bernoulli theory for the beam and the bilinear Win- 

kler model for the substrate. Thus, the unilateral contact is the only source of non-linearity. The proposed 

approach relies on reducing the non-smooth continuous system to a piecewise smooth multi-degree of 

freedom model. The beam is represented as a chain of discrete units through the use of the lattice spring 

model (LSM) and consequently, the phase space is divided into a number of subdomains. Hence, the 

system smoothness is lost when the trajectory of lattice nodes cross the boundaries between these sub- 

domains. An effective algorithm has been developed to handle the unilateral constraints by tracking the 

trajectories and successively capturing the intervals that the nodes spend in each of the smooth regions. 

Unlike more commonly used methods, it neither relies on any prior information (such as the number 

and location of the lift-off areas) nor on the non-linear solvers. The accuracy and robustness of this nu- 

merical technique have been demonstrated in several application examples. Furthermore, the developed 

algorithm is utilised in combination with the shooting method and continuation of the periodic motions 

to obtain the non-linear normal modes (NNMs) of the system. We show that frequency-stiffness ( ̄�u 
i 
–k̄ w ) 

plots can be used to describe the salient features of the NNMs. For the beam on the full foundation, the 

first mode in the configuration space has a linear shape and thus, the conventional bilinear formulation 

can accurately approximate the non-linear frequency. For higher modes, the modal lines are open curves 

and the bilinear approximation loses its accuracy. In addition, internal resonances may occur once the 

frequencies are commensurate. They are characterised as new multimodal motions emanating from the 

backbone in the frequency–stiffness plot. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Over the past several years, the conventional bilateral contact 

constraint has been widely used to assess and predict the dy- 

namic behaviour of structural members attached to soft substrates. 

The classic design of piles partially embedded in soil ( Prendergast 

et al., 2013 ), bridge piers ( Zarafshan et al., 2012 ), railway tracks 

in high-speed transportation systems ( Tran et al., 2014 ) and fluid- 

conveying pipes ( Doaré, 2010 ) are all examples of mechanical 

systems with the components bonded to compliant foundations. 

In these conventional models, the underlying bilateral interaction 
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manifests itself as a perfect connection between the structure and 

substrate. Thus, the foundation reacts equally both in compression 

and in tension where the restoring force is proportional to the dis- 

placement at the interface through a linear constitutive law ( Fryba, 

1972; Hetényi, 1946 ). Various mathematical frameworks, either an- 

alytical or numerical, have been previously developed and utilised 

in the literature in order to study the role of such a foundation 

in dynamic stability and vibrational behaviour, in the case of elas- 

tic semi-infinite space ( Shield et al., 1994 ) and structure-substrate 

systems ( Attar et al., 2014a; 2015; Mallik et al., 2006; Yokoyama, 

1996 ). However, the main drawback of this model can be its re- 

striction to concisely reproduce the physical reality of the interac- 

tion once the continuum tends to separate from the substrate at 

the interface. 

In many of physical problems, the component may not be se- 

curely attached to the support or the substrate may be composed 
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of matters with different mechanical properties in compression 

and tension. Thus, the reaction of the support strongly depends on 

the direction of displacement. This can be interpreted as a bilinear 

non-smooth contact constraint at the interface of two bodies 

where the contact force is not solely a function of the system’s 

elasticity but also the inward-outward movement directions. Note 

that a constraint is non-smooth if its constitutive law, which is 

an equation to relate restoring forces to displacement (and/or 

velocity) components, is non-smooth (a function f ( x ) is smooth 

if it is continuously differentiable up to any order in x ). Such a 

constraint can be found, for instance, in a submerged moored 

floating structure where the stiffness of the mooring structure is 

highly influenced by the bilinear behaviour of the tether operating 

in an alternating taut-slack state ( Lu et al., 2013 ). This means that 

the constitutive law, which describes the tether constraining force 

with respect to the displacement of floating structure, is continu- 

ous but the non-smoothness originates from the discontinuity in 

its slope. As a result, the system response is dramatically altered, 

exhibiting behaviour that cannot be explained by the linear vibra- 

tion theory. In particular, the modal superposition method cannot 

be applied to express the system’s free and forced oscillations as a 

linear combination of independent normal modes. Therefore, there 

is a considerable need for more realistic models to characterise 

the non-smooth nature of the contact mechanism at the interface. 

To this end, the so-called bimodular, bilinear, damaged, tension- 

less, one-way or unilateral models have been proposed ( Ma et al., 

2009a, b; Zhang and Murphy, 2004 ). The tensionless, one-way and 

unilateral models only react in compression, while the bilinear and 

bimodular models sustain compression and tension with two dif- 

ferent stiffnesses. From the mathematical point of view, this dis- 

continuity in the contact constitutive law is introduced by the ap- 

plication of Heaviside step function in the equations of motion 

to relate the reaction force to the sign of displacement (and/or 

velocity). This demonstrates the non-smoothness character of the 

problem, even with the assumption of the elastic behaviour of the 

structure in the range of small deformation theory. For instance, 

considering the unilateral behaviour for the Winkler foundation, 

which is the representation of the elastic substrate by mutually in- 

dependent parallel springs, leads to an ambiguity in the system as 

each spring may be in either contact or non-contact states. Thus, 

developing a general algorithm to predict the system’s response is 

a quite challenging task. Even a single-degree-of-freedom (SDOF) 

system with the unilateral constraint can lead to complex dynam- 

ics with no analogy in the underlying linear system ( Shaw and 

Holmes, 1983; Thompson et al., 1983 ). This might be the main rea- 

son for the limited number of studies dealing with the non-smooth 

dynamics of the structural dynamic problems with the unilateral 

contact constraints. 

The non-smooth constraints are commonly found in practical 

applications. Buckling and post-buckling behaviour of a rod/beam 

constrained inside a cylindrical/horizontal elastic constraint ( Miller 

et al., 2015 ), non-linear modal analysis of riser-soil systems and 

corresponding vortex-induced dynamics ( Neto et al., 2015 ), and the 

slackness behaviour of supporting hangers in suspension bridges 

( Lee and Chung, 2013 ) are some practical cases that can exhibit the 

importance of this topic. In this regard, the problem of beam-like 

components on the unilateral substrate is a good representative ex- 

ample to show that the non-smooth aspect of structural dynamic 

problems have seldom been noticed by the dynamics community. 

Consequently, there is an ongoing challenge for the establishment 

of a general stable solution procedure for the static analysis of such 

a system, not to mention the dynamic analysis ( Bhattiprolu et al., 

2013 ; Chen and Chen, 2011 ; Ma et al., 2011 ). 

During mechanical deformation, the number and/or location of 

the lift-off zones (the areas where the component is not in contact 

with the foundation) will vary with respect to externally applied 

loads. Due to its well-known difficulty, in the most of previous 

studies, the information regarding detachment zones is assumed 

to have been already observed and provided prior to the solution. 

Hence, the classical theories for the contact and non-contact zones 

and also the compatibility conditions between them can be used 

for the numerical and/or analytical models describing the system 

in question ( Co ̧s kun, 2003; Silveira et al., 2008; Zhang and Mur- 

phy, 2004 ). This method is fairly computationally inexpensive and 

greatly simplifies the mathematical analysis. In practice, this ap- 

proach reduces the problem to a set of differential equations with 

unknown zone lengths. Nonetheless, in reality, the range of appli- 

cability for this approach depends on the degree of complexity of 

the problem. In most cases, this is only limited to particular types 

of non-linear systems with simple geometries where it is not diffi- 

cult to identify the lift-off regions before solving the problem. Ob- 

viously, the solutions based on the prior information are not flexi- 

ble enough to describe the systems with more complex geometries 

or loading conditions, even for static analysis. For the dynamic re- 

sponse, the continuous matter resting on the unilateral foundation 

involves several contact and non-contact zones which vary with 

time. Thus, more effort s are needed to develop iterative algorithms 

in order to obtain the solution ( Attar et al., 2014b ). 

The numerical methods for the integration of interacting bodies 

are theoretically convenient techniques to deal with the present 

unilateral contact problem without prior knowledge regarding the 

contact zones. At the same time, it should be noted that establish- 

ment of a robust methodology for the treatment of non-linearities 

in this type of interaction is not an easy task. It is obvious that 

the finite element analysis (FEA) and the well-known contact al- 

gorithms, e.g. penalty-based algorithms (or Lagrange multiplier 

method if the structure is subjected to the contact impenetrability 

condition) ( ANSY, 2010 ), can be implemented to construct a full- 

scale contact model at the interface and then capture the unilateral 

constraint mechanism by employing non-linear solvers. However, 

due to the complexity of the tools required to perform a compre- 

hensive investigation and the inherent mathematical issues such as 

stability and convergence problems, design optimisation can be in- 

feasible for the full-scale FE model. Therefore, there has been an 

interest in reduced order models among scholars in recent years 

to reduce the computational burden of non-linear analysis for an 

extensive parametric study. 

The objective of this study is to develop a numerically efficient 

scheme for the beam-foundation problems with the unilateral con- 

straint at the interface. To develop such an approach, we use the 

lattice spring model (LSM Attar et al., 2014a; Griffiths and Mustoe, 

2001; Pasternak and Mühlhaus, 2005 ) to discretise the non-smooth 

continuous system into a chain of discrete units and the unilateral 

constraints are captured by connecting the nodes to the ground 

through one-way spring-dampers. Accordingly, the phase space is 

divided into a number of regions where the system response is lin- 

ear (smooth) within each region. Mathematically, the smoothness 

is lost when the trajectory of lattice nodes cross the borders be- 

tween the subdomains. Thus, the trajectory of each node is a con- 

catenation of smooth solutions with the transition points between 

them. This piecewise smooth nature of the problem is the basis for 

analysis of the LSM with identical nodes connected to each other 

through identical spring elements. A general scheme is developed 

to solve the governing second-order vector equation of motion for 

static and dynamic problems. Indeed, the solution method tracks 

the trajectory of the nodes and successively captures the intervals 

they spend in each of the smooth subdomains. Comparing the 

accuracy and robustness of the proposed approach versus other 

methods (numerical or analytical) in the example applications re- 

veals that it is a general stable scheme with no dependency on the 

prior information or non-linear solvers. In addition, we investigate 

the salient features of the non-linear periodic motions such as 
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