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a b s t r a c t 

This paper computes stationary profiles of an isotropic, homogeneous, linearly elastic rod with its end- 

point locations and tangents specified. One end of the rod is clamped and the other end makes contact 

with a flat, rigid, impenetrable surface, which is displaced towards the clamped end. This boundary value 

problem has applications to biomechanical sensory devices such as mammal whiskers. The paper gives 

exact analytical solutions to the boundary value problem, embracing the planar equilibrium configura- 

tions for both point contact and line contact with the wall. Plots of loading paths for different inclina- 

tions of the wall provide an insight into the force-displacement relationship appertaining to real world 

slender rods under this type of loading. This report is complemented by data obtained from correspond- 

ing experimental studies which shed light on the differences between the model, which is based on the 

mathematical theory of elasticity, and the mechanics of real world long slender bodies, such as mam- 

malian vibrissal systems. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

The mechanics of a long elastic rod or bar that is clamped 

at one end and has a load applied at the other end arises in 

many areas of structural engineering; for example, it finds wide 

application in relation to the critical load that a strut or column 

can sustain prior to buckling, i.e., ‘Euler Buckling’. It additionally 

arises within the context of biomechanics. For example, animal 

whiskers and antennae can be characterised as long, slender, 

flexible rods, which are fixed at one end whilst the other end 

is free to undergo large deflections under applied axial loadings, 

see Birdwell et al. (2007) , and Lungarella et al. (2002) . In the 

case of certain mammals, for example rats, that load-deflection 

relationship provides information about their surroundings, i.e., 

the whisker is a sensory device, connected to its neurological 

system. That form of tactile sensing has attracted considerable 

interest from researchers in robotics and neuroscience, see for ex- 

ample Solomon and Hartmann (2006) and Mitchinson and Prescott 

(2013) . If pressed further against a surface, a section of the whisker 

tends to establish line contact with the surface, providing further 

information on the shapes and textures of objects, see Dehnhardt 

(1994) . Similar line contact problems arise in the mechanics of 

peeling flexible adherends and have been studied by Majidi et al. 

(2005) . The problem of an extensible rod peeled off a flat sticky 
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surface is the focus of a study by He et al. (2013) , whilst Wu 

et al. (2015) consider the adhesion of the Tokay gecko, a creature 

whose remarkable climbing abilities are attributable to its sticky 

feet. 

The load–deflection relationship in those point contact and 

line contact problems depends on properties of the rod, including 

its flexural rigidity, its mass per unit length, its extensibility and 

its intrinsic curvature. Furthermore, all of those aforementioned 

properties may vary with length and may additionally depend 

on the orientation of the rod due to anisotropy. Studies on rats, 

such as those by Towal et al. (2011) and Voges et al. (2012) , show 

that taper is important and has certain biomechanical advan- 

tages. Kulikov (2013) has additionally found similar advantages in 

Russian Desman whiskers, and Ginter Summarell et al. (2015) in 

pinniped whiskers. In one study, by Towal et al. (2011) , the ge- 

ometric configuration of a whisker is modelled as a parabola. 

Birdwell et al. (2007) include initial curvature and taper, but 

their model involves a linearisation of the exact expression for 

curvature, which strictly applies only to small deflections of a 

whisker. However, in formulating models that aim to provide in- 

sight into the mechanics of whiskers, it is convenient to establish 

a benchmark model against which the effects of initial curvature, 

taper, weight and so forth can be interpreted. In the mathematical 

theory of elasticity, the elastica model assumes that the internal 

bending moment of an unshearable, inextensible rod is linearly 

proportional to its curvature, see Antman (2005) . Since the elastica 

involves the exact (nonlinear) expression for curvature it applies to 

both large and small deflections. It establishes the basis for studies 

of whiskers by Clements and Rahn (2006) . However, the authors 
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do not represent the problem as a boundary value problem, nor 

do they solve the equations analytically. 

This paper applies the elastica model, formulated as a bound- 

ary value problem, to the mechanics of both point and line con- 

tact. The rod/whisker is assumed to be isotropic and homogeneous, 

i.e., constant elastic stiffness along its length. Given that stiffness 

is more important than weight, the latter is ignored. Additionally, 

the rod is assumed to be inextensible and straight in its natural 

unstressed configuration. 

Regarding the boundary conditions, we examine the equilib- 

rium of a rod/whisker that has one end fixed (in the mammal’s 

face) and the free end deflects upon contact with an inclined wall 

that is displaced towards the fixed end such that it compresses the 

rod/whisker. The problem of determining the configuration of a rod 

in point contact with an inclined load has been studied before, for 

example by Frisch-Fay (1962) and Navaee and Elling (1992) . The 

analysis presented here unifies the mechanics of point contact with 

line contact. It additionally covers a range of angles of inclination 

of the wall, from the vertical to the horizontal. It presents exact 

analytical solutions and accompanying plots that illustrate the rela- 

tionship between the displacement of the wall and the correspond- 

ing compressive force exerted on the rod. The analysis is com- 

plemented by data from experiments on slender, flexible nickel–

titanium rods, which shed light upon issues arising with respect to 

the behaviour of similar rod-like structures, such as whiskers. 

The paper is set out as follows: The next section specifies the 

experimental set-up, the physical boundary conditions and the pa- 

rameterisation of the rods used in the experiments. In the section 

after that, the mathematical model is expressed as a dimension- 

less system of six first-order nonlinear ordinary differential equa- 

tions. That is followed by a full solution to the boundary value 

problem, involving Jacobian elliptic integrals (refer to Abramowitz 

and Stegun (1966) for information on those integrals and the asso- 

ciated elliptic functions). The penultimate section presents force–

displacement loading paths of experimental data together with 

those predicted by elastica theory. The paper ends with a dis- 

cussion of its findings within the context of further studies on 

whiskers and real-world problems generally. 

2. Formulation of the boundary value problem 

Formulated during the eighteenth century by Euler and 

Bernoulli, the elastica is an established model for the large 

deflections of long slender rods; see Levien (2008) and Goss 

(2009) for historical perspectives. Consequently, the formulation of 

the boundary value problem set out in this paper follows a well 

trodden path, but we mention here Frisch-Fay (1962) and Batista 

(2013) where we find related formulations, and the constrained 

problems considered in Plaut et al. (1999) and Domokos et al. 

(1997) . 

Nickel–titanium alloy rods of circular cross-section with radius 

0.5 mm and lengths varying from 300 to 500 mm were selected for 

the experiments. We assume, with good justification, that the rods 

are inextensible, unshearable, isotropic and homogeneous. Each rod 

has length L and is parameterised by the independent arc-length 

variable S , where 0 ≤ S ≤ L . In its unstressed condition the rod lies 

straight, i.e., it has no intrinsic curvature. That straight state is the 

reference state from which all experiments begin. It also marks out 

the X axis, i.e., in its natural state the rod lies along the X axis. 

The rod’s bent form is planar. Its configuration is specified by 

the coordinates X ( S ), Y ( S ) and an angle ψ( S ), measured anticlock- 

wise from the X axis, see Fig. 1 , with 

d X 

dS 
= cos ψ, (1) 

d Y 

dS 
= sin ψ. (2) 

The curvature � of the rod is expressed in terms of the change in 

slope: 

dψ 

dS 
= �. (3) 

In an experiment one end of the rod, designated S = 0 , is fixed 

at zero in a chuck such that its position X (0) and Y (0) and its slope 

ψ(0) are fixed throughout the experiment. Those boundary condi- 

tions can be expressed as 

X (0) = 0 , (4) 

Y (0) = 0 , (5) 

ψ(0) = 0 . (6) 

An experiment proceeds by displacing a rigid plane surface, re- 

ferred to as a ‘wall’, along the X axis from S = L towards S = 0 , 

by amount D , as shown in Fig. 1 . The wall is oriented to the X 

axis at an angle π/ 2 − α, where 0 ≤ α ≤ π
2 . We assume that fric- 

tion between the wall and the rod is negligible. As D increases, 

the tip of the rod (S = L ) is in point contact with the wall and de- 

flects upwards along the wall until a point is reached whereby the 

tangent at the tip is parallel with the wall, i.e., ψ(L ) = π/ 2 − α. 

That occurs at a value of D denoted D c . Upon further increases in 

displacement of the wall, D > D c , the free end of the rod slides 

further up the wall, such that a section of rod, of length B , is in 

line contact with the wall. The remaining ‘free’ section of rod is 

of length L − B . The computation of D is with respect to that free 

length, as follows: 

D = L − X (L ) + Y (L ) tan α, for point contact , (7) 

D = L − X (L − B ) + Y (L − B ) tan α, for line contact . (8) 

That set-up involves the following boundary conditions: 

X (L ) = L − �, for D < D c . (9) 

X (L − B ) = L − �, for D > D c . (10) 

where � is the ‘end shortening’ measured to the point of first con- 

tact with the wall, i.e., for D < D c it is the amount of horizontal 

displacement of the tip of the rod S = L, and for D > D c , � it is 

the horizontal displacement of the point S = L − B . 

During an experiment, the end of the free section of the rod is 

in contact with the wall. The curvature ( �) of that free section of 

bent rod does not change sign along its length. However, since no 

external bending moments are applied at the point of contact with 

the wall, the curvature at that point is zero and the the following 

holds: 

�(L ) = 0 , for D < D c , (11) 

�(L − B ) = 0 for D > D c , (12) 

Assuming external moments and forces, e.g., weight, are neg- 

ligible, the loads acting on each element of the rod can be de- 

composed into a compressive force with magnitude denoted T , act- 

ing parallel with the X axis and in the negative direction, plus a 

force acting along the Y axis in the positive direction, with magni- 

tude denoted N . There is also a bending moment, which acts anti- 

clockwise about an axis normal to the X, Y plane, of magnitude M . 

The forces N and −T can be expressed in terms of R , the force act- 

ing normal to the wall, where R 2 = N 

2 + (−T ) 2 , see Fig. 2 . From 
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