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a b s t r a c t

This work addresses the elastodynamic problem for a finite-sized, elastic solid matrix containing multiple

nano-heterogeneities of arbitrary shape, number and geometric configuration. The problem is formulated

under plane strain conditions, and time-harmonic motions are assumed to hold. The aim is to evaluate the

non-uniform stress and strain fields that develop in the solid matrix and to identify zones of dynamic stress

concentration for the case of dynamic loads applied along the matrix boundary. The mechanical model used

here is based on a combination of classical elastodynamic theory for the bulk solid under non-classical bound-

ary conditions, supplemented with a localized constitutive equation for the solid-inclusion interface in the

framework of the Gurtin–Murdoch theory of surface elasticity. As computational tools we use (a) the 2D

boundary element method (BEM) with frequency-dependent fundamental solutions for the bulk solid and

(b) the finite element method (FEM) software package ANSYS augmented by a macro-finite element for rep-

resenting surface effects on the contour of the nano-inclusions. At first, accuracy of the numerical solutions

obtained for the dynamic stress concentration factor (DSCF) and for the diffracted displacement wave field

is satisfactorily established. Next, comparison studies are conducted to gauge the BEM and FEM separately.

These are followed by extensive numerical simulations that show that both BEM and FEM are able to capture

the dependence of the diffracted wave field and of the DSCF on the type of the inclusions, their overall con-

figuration and the nature of applied dynamic loads. It is concluded that the interaction effect between the

nano-heterogeneities and the external perimeter of the bounded solid matrix is of paramount importance.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Wave propagation in homogeneous elastic continua is a well-

known phenomenon and the numerical modeling effort involves so-

lution of hyperbolic partial differential equations. The situation be-

comes far more complicated if the medium is heterogeneous, see

Berezovski (2010). Elastic wave propagation through naturally oc-

curring or man-made heterogeneous materials has attracted the

attention of researchers from branches of science as diverse as seis-

mology, material science, fracture mechanics, computational me-

chanics, etc. Another difficulty is that discontinuities such as cracks,

cavities and inclusions complicate the overall picture by acting as

scatterers and stress concentrators, thus causing reflection, refrac-

tion, diffraction and scattering phenomena that are not easy to quan-

tify. In elastodynamics, the motion of waves in bounded solids is

∗ Corresponding author: Tel.: +30 2310995663; fax: +30 2310995769.

E-mail addresses: slp_fce@uacg.bg (S.L. Parvanova), gpekov@gmail.com (G.P.

Vasilev), petia@imbm.bas.bg (P.S. Dineva), gdm@civil.auth.gr (G.D. Manolis).

governed by the conservation law for linear momentum, the consti-

tutive and kinematic relations, all complemented by initial as well

as boundary continuity conditions along the solid boundaries, see

Achenbach (1973). Computational tools available for solution of these

problems within the frame of classical elastodynamics are as fol-

lows: (a) analytical and semi-analytical techniques dealing with reg-

ular geometries and employing wave function expansion methods

(Kratochvil and Becker (2012), Li (2004), Pao and Mow (1971)), ray

techniques (Babich (1956), Pao and Gajewski (1977)), complex func-

tion methods (Liu et al. (1982), Yang et al. (2015)), integral equa-

tion methods (Bostro ⁄m (2003), Lu and Hanyga (2004), Ayatollahi et

al. (2009)), matrix methods including reflectivity methods and gen-

eralized coefficient techniques (Kennett (1983)), and finally mode

matching techniques (Fah (1992), Panza et al. (2009)); (b) numeri-

cal techniques based on direct time and space discretization of the

elastodynamic equations which lead to finite difference methods

(Boore (1972), Kristek and Moczo (2003)) and finite element methods

(Komatitsch et al. (2010), Nakasone et al. (2000), Santare et al. (2003),

Wolf and Song (1996), Wolf (2003), Zhang and Katsube (1995)).

The alternative use of integral representations based on reciprocity
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theorems and the concurrent introduction of fundamental solu-

tions of the governing differential equations leads to mesh reduc-

ing boundary element methods (Dominguez (1993), Dravinski and Yu

(2011), Kausel (2006), Kobayashi (1983), Manolis and Beskos (1988),

Manolis and Dineva (2015), Parvanova et al. (2013, 2014), Valeva and

Ivanova (1998)); (c) hybrid techniques that combine the previously

mentioned techniques in various ways (Dineva et al. (2012), Gatmiri

and Arson (2008), Gatmiri et al. (2008), Manolis et al. (2015), Manolis

and Dineva (2015), Mogilevskaya and Crouch (2001, 2002)).

During the last few years it has been recognized that the proper-

ties of a given material might not be primarily controlled by its chem-

ical composition, but rather by its microstructure and more so by size

ranging from nanometers to micrometers. The widely discussed in

the literature size effect cannot be described by models in the frame-

work of continuum mechanics and this demands the development

of alternative models and of high-performance computational tools.

When the characteristic cross-sectional dimension of a solid is in mi-

crons, the ratio of surface area to volume becomes an important pa-

rameter and the solid is strongly influenced by surface characteris-

tics. These lead to distinct mechanical properties as compared with

their bulk solid counterparts. With the rapid development of nano-

mechanical systems, size-dependent phenomena in the wave fields

that develop in nanostructures with defects such as holes and in-

clusions are insufficiently understood and need further study. More

specifically, variations in the surface energy in nanostructures are

caused by relaxation of bonds between the surface atoms and this

lead to formation of surface residual stress, which is something that

does not happen inside the solid core. This behavior is a surface stress

effect and is described in the surface elasticity model introduced

by Gurtin and Murdoch (1975). It has been determined that surface

stress is a summation of surface residual stress and surface elastic-

ity. In Gurtin and Murdoch (1975), the interfaces between the nano-

inhomogeneity and the matrix are regarded as ’thin’ material surfaces

that possess their own mechanical properties and surface tension.

Furthermore, non-classical boundary conditions are derived for the

tractions along an interface expressing a stress jump as we move from

matrix to inclusion, due to the presence of surface stress related to

the deformation-dependent surface energy. We note in passing that

if the defects present in a material at the nanoscale are cracks, even

more advanced mechanical theories must be used as surface effects

will surely change the crack tip singularity values, see Sendova and

Walton (2010).

A brief literature review for in-plane wave motion in heteroge-

neous nano-solids described by the Gurtin–Murdoch model points to

the following: (a) most computational techniques used are actually

analytical methods, and use of the boundary element method (BEM),

which is most efficient for problems with low surface to volume

ratios, is mostly absent (see Parvanova et al. 2015) for unbounded

solids), except for static solutions. Also, the finite element method

(FEM) is used to evaluate the contribution of surface stress to the to-

tal potential energy (see Wang et al. 2010) and the Gurtin–Murdoch

surface stress model is implemented in commercial program ANSYS

(2009) through its user programmable features. (b) There are no re-

sults for solution of in-plane wave diffraction problems in bounded

heterogeneous solids at nanoscale; (c) in-plane diffraction of time-

harmonic P- and SV- waves by nano-holes and nano-inclusions in un-

bounded solids were studied analytically in Ru et al. (2009), Wang

et al. (2006), Wang (2009), and Zhang et al. (2011). More specifi-

cally, the wave function expansion method was used to derive an-

alytical expressions for diffracted wave fields in the infinite elastic,

isotropic plane with two circular holes in Wang (2009). Next, Wang

et al. (2006) considered the diffraction of planar P- waves by a nano-

sized circular hole using wave function expansion method. The same

method was applied in Zhang and Katsube (1995) to study the diffrac-

tion of elastic waves by an array of cylindrical holes, including the ef-

fects of surface elasticity. The diffractions of planar P- and SV- waves

by a cylindrical nano-cavity and nano-inclusion were investigated in

Ru et al. (2009). Finally, Fang et al. (2010) analytically evaluated the

presence of surfaces/interfaces on the dynamic stress around single

circular hole, a single circular inclusion and two interacting circular

nano-inclusions in an infinite matrix under P-waves.

A systematic study of the dynamic response of a finite elastic,

isotropic solid with multiple heterogeneities at the nano-scale, which

act both as wave scatterers and stress concentrators, seems neces-

sary. To the authors’ knowledge, the majority of current results in the

field are for unbounded solids under static loads. In this respect, we

believe that new results that take into account the interaction effect

between the multiple inclusions and the external perimeter of the

solid matrix at the nano-scale is both interesting and important. The

present work is an effort in this direction and can be viewed as a con-

tinuation of our previous work (Parvanova et al. 2015) on the BEM

modeling of wave scattering phenomena in an infinite elastic plane.

Thus, we present new results for the interaction effect between the

multiple nano-inclusions and the external perimeter of the elastic

matrix.

More specifically, we focus on the 2D, time-harmonic elastody-

namic problem for a finite, isotropic elastic solid at the nano-scale

containing multiple heterogeneities of arbitrary configuration. To

this purpose, we develop, verify and use for numerical simulations

the following computational tools: (i) A BEM with 2D frequency-

dependent fundamental solutions for the bulk solid; (ii) an FEM im-

plementing of the surface effect on the contour of the nano-inclusion

as one macro-finite element in the ANSYS (2009) software package.

The paper is organized as follows: (a) we start with the formulation of

the 2D elastodynamic problem for a finite, elastic and isotropic solid

matrix with heterogeneous structure at the nano-scale solid under

time-harmonic waves in Section 2; (b) we continue with a BEM re-

formulation at all interfaces to include surface effects in Section 3;

(c) the FEM formulation and solution is developed in Section 4; (d)

verification studies follow in Section 5 for the proposed numerical

scheme; (e) comparison studies between the BEM and FEM follow in

Section 6; (f) extensive parametric studies are conducted in Section 7

to investigate the effect of size-dependent effects in the solid matrix

and finally (g) Section 8 lists the conclusions of the present study.

2. Problem statement

Consider wave motion in the plane x3 = 0 for a Cartesian coordi-

nate system O-x1x2x3, where a finite-sized, elastic and isotropic solid

with boundary � is subjected to time-harmonic loads with frequency

ω, see Fig. 1. The solid matrix contains multiple nano-inclusions with

boundaries �n
I

or nano-cavities �n
H

, where n = 1, 2,…, N, of arbi-

trary shape, number, size and configuration. We assume that hetero-

geneities do not intersect and we denote their total surfaces as �I =⋃N
n=1 �n

I
and �H = ⋃N

n=1 �n
H

. The total boundary is then S = � ∪ �H

in the case of cavities (or holes) and S = � ∪ �I in the case of inclu-

sions. The material properties (Lamè constants and density) are de-

noted as λM, μM, ρM for the solid matrix and λI, n, μI, n, ρ I, n for the nth

inclusion. Furthermore, the displacement vector ui(x1, x2, ω), (where

i, j = 1, 2), the stresses σ ij(x1, x2, ω) and the corresponding traction

vector ti(x1, x2,ω) = σi j(x1, x2,ω)n j , (nj is the outward pointing unit

normal vector) all satisfy the equations of motion in the bulk solid. In

the absence of body forces, these are:

σi j,i + ρω2uj = 0 (1)

where

σi j =
{

CM
i jkl

uM
k,l

(matrix)

CI,n
i jkl

uI,n
k,l

(n − th inclusion)
,

Ci jkl = λδi jδkl + μ(δikδ jl + δilδ jk), ρ =
{

ρM

ρI,n

(2)
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