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a b s t r a c t

The generalized self-consistent method (GSCM) is applied to obtain the closed-form estimates for the 5 elastic

moduli of a transversely isotropic composite consisting of an isotropic matrix reinforced by unidirectional

isotropic fibers of circular cross-section. The interfaces between the matrix and the fibers in this composite

are taken to be imperfect and characterized by the general elastic isotropic model which includes as particular

cases the widely used elastic spring-layer and membrane-type imperfect interface models. The displacement,

strain and stress fields in an infinite homogeneous medium containing a composite cylinder with a general

imperfect interface and subjected to each of 4 elementary remote uniform loadings are specified and used in

deriving the estimates for the effective elastic moduli. These results extend and bridge the special relevant

results reported in the literature for fiber-reinforced composites with imperfect interfaces characterized by

the spring-layer or membrane-type imperfect interface model. Numerical examples are also given to illustrate

some results.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Fiber-reinforced composites have been extensively studied due to

their technological and theoretical importance. Within the frame-

work of micromechanics, a large number of works have been ded-

icated to estimating the effective (or macroscopic) elastic moduli

of a fiber-reinforced composite in terms of its fiber and matrix

properties and its microstructure since the pioneering investigations

(see, e.g., Hashin and Rosen, 1964; Hill, 1963, 1964; Hashin, 1979;

Hashin and Shtrikman, 1963; Qiu and Weng, 1991). Accounting for

the effect of imperfect fiber-matrix interfaces on the effective elastic

moduli goes back to the studies of Hashin (1990). Recently, owing to

the development of nanocomposites, imperfect interfaces induced by

the presence of non-negligible interfacial energy have received par-

ticular attention (see, e.g., Chen and Dvorak, 2006; Chen et al., 2007;

Duan et al., 2005a, 2005b, 2009; Le Quang and He, 2007a, 2007b,

2007c, 2008, 2009; Hashin, 1992).

In estimating the effective elastic moduli of fiber-reinforced

composites in the context of linear elasticity, two imperfect inter-

face models have been widely adopted. The first one is the so-

∗ Corresponding author at: Laboratoire de Modélisation et Simulation Multi Echelle,

Université Paris-Est, UMR 8208 CNRS, 5 Boulevard Descartes, 77454 Marne-la-Vallée

Cedex 2, France. Tel.: +33 160 957 786; fax: +33 160 957 799.

E-mail address: qi-chang.he@univ-paris-est.fr (Q.-C. He).

called spring-layer imperfect interface model, according to which the

traction vector is continuous across an interface while the displace-

ment vector across the same interface suffers a jump proportional to

the traction vector. This model was used in the works of Benveniste

(1985) and Hashin (1990, 1991) and a number of other works ded-

icated to fiber-reinforced composites (see, e.g., Shen and Li, 2003,

2005). The second imperfect interface model is the membrane-type

imperfect interface model, according to which the displacement vec-

tor across an interface is continuous whereas the traction vector

across the same interface presents a jump governed by the Young–

Laplace equation. The second model was first derived by Gurtin

and Murdoch (1975) and has been recently widely used in studying

nanocomposites (see, e.g., Chen and Dvorak, 2006; Chen et al., 2007;

Duan et al., 2009; Mogilevskaya et al., 2008, 2010a, 2010b).

It is now well-established that the spring-layer and membrane-

type imperfect interface models correspond to two particular cases

of a general, linearly elastic, imperfect interface model derived by ap-

plying asymptotic analysis to an interphase of uniform weak thick-

ness h between two phases so as to replace the interphase by an im-

perfect interface of null thickness to within an error of order 0(h2)

(see, e.g., Benveniste, 2006; Gu and He, 2011; Gu et al., 2014; Bövik,

1994; Hashin, 2002). Precisely, according as the elastic stiffness of the

interphase is much lower or higher than that of each of the surround-

ing phases, the general elastic imperfect interface model degenerates

into the spring-layer or membrane-type imperfect interface model.
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Thus, the general imperfect interface model bridges the two partic-

ular extremes ones while covering the intermediate ones. In a re-

cent work (Gu et al., 2014), the general imperfect interface model has

been used in estimating the effective elastic bulk and shear moduli

of isotropic particulate composites and the obtained results have ex-

tended and unified the previous relevant results reported in the liter-

ature for isotropic particulate composites in which the interfaces are

characterized by the spring-layer or membrane-type imperfect inter-

face model.

The present work, which can be viewed as a continuation of our

previous one (Gu et al., 2014), aims to estimate the 5 effective elastic

moduli of a transversely isotropic composite consisting of a matrix re-

inforced by unidirectional continuous fibers of circular cross-section.

The matrix and fibers are assumed to be linearly elastic isotropic. The

interfaces between the matrix and the fibers are taken to be described

by the general elastic isotropic imperfect interface model whose com-

pact formulation is provided in Gu et al. (2014). Unlike the work of

Gu et al. (2014), the generalized self-consistent method (GSCM) is di-

rectly applied to estimate for the 5 effective moduli. These results are

new, extending and bridging the relevant results found in the liter-

ature on fiber-reinforced composites with imperfect interfaces char-

acterized by the spring-layer or membrane-type imperfect interface

model. The results derived in the present work include as particular

ones those reported in the literature on the effective elastic moduli of

fiber-reinforced composites with imperfect interfaces characterized

by the spring-layer and Gurtin–Murdoch models.

The paper is organized as follows. In Section 2, the local and over-

all constitutive relations for a transversely isotropic composite con-

sisting of elastic isotropic fibers embedded in an elastic isotropic ma-

trix are formulated. The general, linearly elastic, isotropic imperfect

interface model is specified. In Section 3, GSCM is applied to obtain

the closed-form estimates for the 5 effective elastic moduli of the

composite in question. After recalling the energy consistency con-

dition, the displacement, strain and stress fields in the fiber, matrix

and effective medium involved in GSCM are explicitly provided for

each of the 5 elementary macroscopic loadings. The implementation

of the energy consistency condition gives rise to the closed-form esti-

mates for the 5 effective elastic moduli. For clarity, a number of cum-

bersome formulae or expressions are not specified in the main text

but postponed to appendices. In Section 4, numerical examples are

provided so as to illustrate and discuss some results of Section 3. In

Section 5, a few concluding comments are given.

2. Local, interfacial and effective constitutive relations

The composite material studied in the present work consists of a

linearly elastic isotropic matrix reinforced by linearly elastic isotropic

fibers aligned along one direction. For later use, we introduce a three-

dimensional (3D) orthonormal basis {e1, e2, e3} with the unit vector

e3 oriented in the direction of the fibers. In the following, we refer

to the matrix as phase 2 and to the fibers as phase 1. The interface

between a generic fiber and the matrix is symbolized by �, and a unit

vector n normal to � and oriented from the fiber to the matrix is given

by

n = e1 cos θ + e2 sin θ, (1)

where θ is the angle between n and e1. Clearly, n is perpendicular to

the fiber direction e3.

The local constitutive relations of the matrix and fiber phases are

defined by the isotropic Hooke law:

σ(i) = L
(i)ε(i), L

(i) = 3k(i)
(

1

3
I ⊗ I

)
+ 2μ(i)

(
I − 1

3
I ⊗ I

)
. (2)

In this relation, the superscript i is equal to 1 or 2 according as the

fiber or matrix phase is concerned; σ(i) is the Cauchy stress tensor and

ε(i) is the infinitesimal strain tensor derived from the displacement

vector u(i) of phase i by

ε(i) = 1

2

[
∇u(i) +

(∇u(i)
)T

]
; (3)

L
(i) is the elastic isotropic stiffness tensor of phase i with the bulk and

shear moduli k(i) and μ(i); I is the 3D second-order identity tensor;

⊗ represents the usual tensor product; I stands for the fourth-order

identity tensor for the space of second-order symmetric tensors. Us-

ing the Kronecker tensor product ⊗ defined as(
U⊗V

)
i jkl

=
(
UikVjl + UilVjk

)
/2 (4)

for any two second-order tensors U and V, we can write I = I⊗I.

The interface � between a fiber and the matrix is taken to be im-

perfect. Precisely, this interface is characterized by the general lin-

ear elastic isotropic imperfect interface model derived through sub-

stituting an imperfect interface of null thickness for a linearly elastic

isotropic interphase, called phase 0, of small uniform thickness h per-

fectly bonded to the fiber and matrix (Benveniste, 2006; Gu and He,

2011; Gu et al., 2014). To recall the formulation of this model, we first

introduce the normal and tangential projection operators of second

order

N = n ⊗ n, T = I − N (5)

and the ones of fourth order

T = T⊗T , N = I − T. (6)

Next, we define the interfacial jump operator [[•]], the interfacial av-

erage operator 〈•〉 and the surface divergence operator divs(•) as fol-

lows:

[[•]] = •(+) − •(−), 〈•〉 =
(
•(+) + •(−)

)
/2, (7)

divs(•) = ∇(•) : T . (8)

Above, •(+)means a quantity • evaluated at the interface � on the side

of the matrix while •(−) represents a quantity • evaluated at the in-

terface � but on the side of the fiber.

Now, we can specify the interfacial jump relations characterizing

the imperfect interface � (Gu et al., 2014):

[[u]] = h

2
[c1(T : 〈ε〉) n+ (c2N + c3T )〈t〉], (9)

[[t]] = h

2
divs[c1(n · 〈t〉)T + (c4T + c5T ⊗ T )〈ε〉]. (10)

In these two relations, t is the traction vector acting on � given by

t = σn; the 5 interfacial material parameters cj ( j = 1, …, 5) are given

in terms of the bulk and shear moduli, k(i) and μ(i) (i = 0, 1, 2), of the

phases and interphase by

c1 = 3k(2) − 2μ(2)

3k(2) + 4μ(2)
+ 3k(1) − 2μ(1)

3k(1) + 4μ(1)
− 2

3k(0) − 2μ(0)

3k(0) + 4μ(0)
,

c2 = 6

3k(0) + 4μ(0)
− 3

3k(2) + 4μ(2)
− 3

3k(1) + 4μ(1)
,

c3 = 2

μ(0)
− 1

μ(2)
− 1

μ(1)
,

c4 = 2
(
μ(2) + μ(1) − 2μ(0)

)
,

c5 = 2

(
μ(2)

(
3k(2) − 2μ(2)

)
3k(2) + 4μ(2)

+
μ(1)

(
3k(1) − 2μ(1)

)
3k(1) + 4μ(1)

− 2
μ(0)

(
3k(0) − 2μ(0)

)
3k(0) + 4μ(0)

)
. (11)

It is useful and important to note that the imperfect interface model

characterized by the relations (9) and (10) includes as two special
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