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a b s t r a c t

Theoretical estimates are given for the overall dissipative response of ferroelectric ceramics with second-

phase inclusions, under arbitrary electromechanical loading histories. The ferroelectric behavior of the con-

stituent phases is described via a stored energy density and a dissipation potential in accordance with the

theory of generalized standard materials. An implicit time-discretization scheme is used to generate a vari-

ational representation of the overall response in terms of a single incremental potential. Estimates are then

generated by constructing sequentially laminated microgeometries of particulate type whose overall incre-

mental potential can be computed exactly. Because they are realizable, by construction, these estimates are

guaranteed to conform with any material constraints, to satisfy all pertinent bounds, and to exhibit the re-

quired convexity properties with no duality gap. By way of example, the theory is used to study the influence

of metallic particles and of microcavities on the electro-deformability of a lead zirconate titanate. In particu-

lar, the role of remanent polarization fluctuations on the piezoelectric properties is assessed.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The search for electro-deformable materials with specific combi-

nations of properties not found in monolithic ferroceramics has mo-

tivated the development of an increasing variety of two-phase fer-

roelectric composites. A natural option consists in dispersing in a

polycrystalline ferroelectric ceramic second-phase inclusions such as

metallic particles (e.g., Duan et al., 2000; Ning et al., 2012; Zhang

et al., 2010) or microcavities (e.g., Piazza et al., 2010). In practice,

these composite materials are first synthesized by a suitable fabri-

cation process, then permanently polarized by application of a strong

electric field, and finally employed within their piezoelectric regime.

Now, the influence of a second phase on the final piezoelectric prop-

erties of the composite system is not evident a priori in view of the

intrincated role of material heterogeneity in the poling process. The

purpose of this work is to estimate theoretically such influence in

terms of the constitutive properties of the phases and the microstruc-

tural characteristics of the composite. A wide range of microme-

chanical models have already been proposed for that purpose —see,

for instance, the monograph of Topolov and Bowen (2009)—, but all
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proposals invariably treat the ferroceramic matrix of a poled com-

posite as a stress-free phase with uniform piezoelectric properties.

Due to material heterogeneity, however, strong spatial variations of

the electric field can arise during the poling process which, in turn,

can result in residual stresses and non-uniform piezoelectric coef-

ficients within the permanently poled specimen (e.g., Idiart, 2014).

To account for these features, the entire poling process must be

simulated.

Given that ferroelectricity is largely hysteretic, the problem calls

for a methodology to estimate the overall response of two-phase de-

formable dielectrics with complex particulate microstructures and

with constituent phases that can simultaneously store and dissipate

electro-mechanical energy. Estimates of this sort for rigid dielectrics

have been recently derived by Idiart (2014). These estimates rely

on the generalized-standard material model for ferroelectricity pro-

posed by Bassiouny et al. (1988) —which identifies the irreversible

electric polarization as an internal variable— and on the variational

representation of Miehe and Rosato (2011) for the macroscopic re-

sponse of heterogeneous ferroelectric solids in terms of an effec-

tive incremental potential. A special class of microgeometries is then

identified such that it reproduces the essential geometrical features

of the actual composite microstructure while at the same time allow

the exact computation of this effective potential. The class consists

of certain sequentially laminated microgeometries which have been

successfully used already to model other types of particulate systems

with nonlinear behavior such as viscoplastic composites and porous
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media (e.g., Danas et al., 2008; deBotton and Hariton, 2002; Idiart,

2008), and non-ohmic composite conductors (Hariton and deBot-

ton, 2003; Idiart and Ponte Castañeda, 2013). The predictions always

conform with material constraints, satisfy all pertinent bounds, and

exhibit the required convexity when applicable. This consistency is

guaranteed by the fact that the estimates are realizable —i.e., exact for

a given class of material systems— by construction. The present work

provides a generalization of this approach to deformable dielectrics.

We begin in Section 2 by formulating the problem of a hetero-

geneous dielectric body undergoing small deformations. The over-

all response is defined for a general composite system in Section 3

and then given for sequentially laminated systems in Section 4. By

way of example, specific results are reported in Section 5 for a lead

zirconate titanate with either metallic particles or microcavities. We

conclude the presentation by identifying a potential issue with a class

of constitutive models commonly used for monolithic polycrystalline

ferroceramics.

2. The composite material model

2.1. The material system and field equations

The material system under study is idealized here as a heteroge-

neous body occupying a domain � and made up of a continuous ma-

trix containing a uniform dispersion of second-phase inclusions. The

matrix phase will be identified with the index r = 1 while the inclu-

sions will be collectively identified with the index r = 2. Each phase

occupies a domain �(r) ⊂� (r = 1, 2) such that � = �(1) ∪ �(2). The

domains �(r) are described by a set of characteristic functions χ (r)(x),

which take the value 1 if the position vector x is in �(r) and 0

otherwise.

We restrict attention to isothermal processes produced by qua-

sistatic electromechanical interactions. These interactions are ex-

erted by a fixed electrostatic potential φ̂ applied via surface elec-

trodes occupying a portion ∂�v of the body boundary ∂� and by a

surface displacement û applied on a portion ∂�u of the body bound-

ary. For simplicity, we disregard the possible presence of free charges

within the material. The governing field equations are then given by

—see, for instance, Kamlah (2001)—

∇ · D = 0 and E = −∇φ in R
3, (1)

∇ · σ = 0 and ε = ∇ ⊗s u in �, (2)

with

D =
{
ε0E in R3\�
ε0E + P in �

(3)

and boundary conditions

φ = φ̂ on ∂�v and [D · n] = 0 on ∂�\∂�v, (4)

u = û on ∂�u and [σn] = 0 on ∂�\∂�u. (5)

In these expressions, φ and u are continuous fields representing the

electrostatic potential and the displacement, D, E, P, σ and ε are, re-

spectively, the electric displacement, the electric field intensity, the

material polarization, and the stress and strain tensors, [·] denotes

the jump across ∂�, n is the outward normal vector to ∂�, and ε0

denotes the electric permittivity of vacuum. In turn, ∇ is the standard

nabla operator and the symbol ⊗s represents the symmetric part of

the tensor product. Along internal surfaces of discontinuity, the vari-

ous fields must satisfy the jump conditions

[φ] = 0, [D · n] = 0, [u] = 0, [σn] = 0, (6)

where n denotes the normal vector to the discontinuity surface. In

addition, the electrostatic potential must vanish at infinity, i.e., φ →
0 as |x| → ∞.

The above field equations must be supplemented with consti-

tutive relations describing the electromechanical response of each

phase. We adopt the thermodynamic approach of Bassiouny et al.

(1988) wherein dissipative processes are characterized by an irre-

versible polarization � playing the role of an internal variable. This

framework is general enough to characterize simple responses such

as linear polarizability as well as complex responses such as rate-

dependent ferroelectricity —see, for instance, Kamlah (2001), Miehe

and Rosato (2011).

The total energy of the material system and its surroundings is

thus written as

E =
∫
�
e(x,ε, P, �) dV +

∫
R3

1

2
ε0E2 dV (7)

where the first term corresponds to the energy stored in the compos-

ite material while the second term is the electrostatic energy of the

electric field. The energy density e is taken to depend explicitly on

position due to the heterogeneity of the body. In turn, the dissipation

of the system is assumed to be of the form

D =
∫
�

∂ϕ

∂ �̇
(x, �̇) · �̇ dV, (8)

where ϕ is a convex, positive function of the irreversible polariza-

tion rate �̇ such that ϕ(·, 0) = 0, which is used to characterize the mi-

croscopic domain switching in the ferroelectric phase. The form (8)

guarantees a positive dissipation.

Thermodynamic arguments then imply that the constitutive rela-

tions of the material are given by (see Bassiouny et al., 1988)

E = ∂e

∂P
(x,ε, P, �), σ = ∂e

∂ε
(x,ε, P, �)

and
∂e

∂�
(x,ε, P, �) + ∂ϕ

∂ �̇
(x, �̇) = 0, (9)

where the first two expressions relate the electric field intensity and

stress with the polarization and strain, and the last expression pro-

vides the evolution law for the irreversible polarization �. In the case

of nonsmooth potentials, the derivatives in (9) should be understood

in the sense of the subdifferential of convex analysis. These constitu-

tive relations conform to the so-called generalized standard material

model provided the energy e(x, ·, ·, ·) is convex (Germain et al., 1983).

In that case, the polarization can be eliminated from the constitutive

description in favor of the electric field intensity by defining the free

energy density

ψ(x,σ, E, �)
.= sup

P,ε
[σ · ε + E · P − e(x,ε, P, �)] + 1

2
ε0E2, (10)

where the first term corresponds to a partial Legendre transformation

of e with respect to P and ε. Note that the function ψ is thus convex

in E and σ but concave in �. The constitutive relations (9) can then be

written as

D = ∂ψ

∂E
(x,σ, E, �), ε = ∂ψ

∂σ
(x,σ, E, �)

and
∂ψ

∂�
(x,σ, E, �) − ∂ϕ

∂ �̇
(x, �̇) = 0. (11)

Making use of the characteristic functions χ (r), the potentials ψ and

ϕ are finally expressed as

ψ(x,σ, E, �) =
2∑

r=1

χ(r)(x) ψ(r)(σ, E, �),

ϕ(x, �̇) =
2∑

r=1

χ(r)(x) ϕ(r)(�̇), (12)

where ψ (r) and ϕ(r) denote, respectively, the free energy densities and

dissipation potentials of each phase r.
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