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a b s t r a c t

In this paper, we study, from the numerical point of view, a mixture problem involving a viscoelastic ma-

terial and an elastic one. The mechanical problem is written as a linear system of two coupled hyperbolic

partial differential equations. An existence and uniqueness result and an energy decay property are recalled.

Then, fully discrete approximations are introduced by using the finite element method to approximate the

spatial variable and the backward Euler scheme to discretize the time derivatives. A priori error estimates are

proved from which, under suitable regularity conditions, the linear convergence of the algorithm is derived.

Finally, some numerical simulations are presented to demonstrate the accuracy of the approximations and

the behaviour of the solutions.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

During the last decades, the number of papers dealing with prob-

lems of mixtures including viscoelastic and elastic materials has in-

creased considerably. Since the first studies of Truesdell and Toupin

(1960), Kelly (1964) or Green and Naghdi (1965, 1968), many papers

have considered mathematical issues as the existence and unique-

ness of solutions or the qualitative properties of the solutions as,

for instance, the energy decay property (see, e.g., Alves et al. 2009a,

2009b, 2013; Ieşan 1992, 2006; Ieşan and Quintanilla 2007; Rivera

et al. 2013). One of the main applications of these models is the the-

ory of the well-known composites, with an increasing use in the au-

tomotive industry.

In this paper, we revisit a problem involving a mixture of a

viscoelastic material and an elastic one which was considered by

Quintanilla (2005) within the theory of viscoelastic mixtures. He con-

tinued the work of Ieşan (2006), for a linear theory, where the dissi-

pation effects were determined by the viscosity of rate type of a con-

stituent and the relative velocity. Thermal effects were also included.

Existence and uniqueness of a weak solution were proved by using

results of the semigroup of linear operators theory, and an energy
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decay property was also shown. Moreover, limit cases, for instance

corresponding to null viscosity coefficients, were analyzed.

Here, we assume the isothermal case and, for the sake of simplic-

ity in the presentation, we restrict ourselves to the anti-plane shear

deformations. We numerically study the problem, providing a priori

error estimates, and we perform some numerical simulations to show

the behaviour of the solutions.

The outline of this paper is as follows. In Section 2, we briefly de-

scribe the mathematical model and we introduce its variational for-

mulation, for which an existence and uniqueness result, proved in

Quintanilla (2005), is recalled. Then, fully discrete approximations are

introduced in Section 3 by using a finite element method for the spa-

tial approximation and the backward Euler scheme for the discretiza-

tion of the time derivatives. An error estimate result is proved from

which the linear convergence is deduced under suitable regularity as-

sumptions. Finally, in Section 4 some numerical examples are shown

to demonstrate the accuracy of the algorithm and the behaviour of

the solution.

2. The model and its variational formulation

In this section, we present a brief description of the model (details

can be found in Quintanilla (2005)).

Let � ⊂ R
d, d = 1, 2, 3, be a domain with a Lipschitz boundary

� = ∂� decomposed into two disjoint parts �D and �S such that

meas (�D) > 0, and denote by [0, T], T > 0, the time interval of

interest.

Let x ∈ � and t ∈ [0, T] be the spatial and time variables,

respectively. In order to simplify the writing, we do not indicate
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the dependence of the functions on x and t. Moreover, a dot above

a variable represents its derivative with respect to the time variable.

Let ũ, w̃ ∈ R
d be the displacement of the viscoelastic and elas-

tic materials, respectively. Assuming the case of the isothermal pro-

cesses, we consider a particular kind of solutions corresponding to

anti-plane shear deformations. Then, we are interested in solutions of

the form ũ = (u1, u2, u3) = (0, 0, u(x1, x2)) and w̃ = (w1, w2, w3) =
(0, 0, w(x1, x2)). We note that this assumption is done for the sake of

simplicity in the presentation and the general case can be analyzed

in a straightforward way.

Therefore, following Quintanilla (2005) the mechanical problem

of a mixture involving a viscoelastic material and an elastic one is

written as follows.

Problem P. Find the displacement of the viscoelastic material u :

� × [0, T ] → R and the displacement of the elastic material w : � ×
[0, T ] → R such that

ρ1ü = α�u + β�w − ξ(u − w) + μ∗�u̇ − ξ ∗(u̇ − ẇ) + ρ1F1

in � × (0, T), (1)

ρ2ẅ = β�u + γ�w + ξ(u − w) + ξ ∗(u̇ − ẇ) + ρ2F2

in � × (0, T), (2)

u = 0, w = 0 on �D × (0, T), (3)

u = 0, w = 0 on �S × (0, T), (4)

u(x, 0) = u0(x), w(x, 0) = w0(x) for a.e. x ∈ �, (5)

u̇(x, 0) = v0(x), ẇ(x, 0) = e0(x) for a.e. x ∈ �. (6)

Here, ρ1 and ρ2 are the mass densities of each constituent, F1

and F2 represent the body forces on each constituent, α, β , ξ and

γ are elastic coefficients, μ∗ and ξ ∗ denote viscoelastic coefficients,

and u0, v0, w0, e0 are given initial conditions. Moreover, homogeneous

Dirichlet boundary conditions have been also assumed on �S × (0, T),

but we point out that Neumann conditions could be used with some

minor modifications in the analysis presented below.

In order to obtain the variational formulation of Problem P, let Y =
L2(�) and H = [L2(�)]d, and denote by (·, ·)Y and (·, ·)H the respective

scalar products in these spaces, with corresponding norms ‖·‖Y and

‖·‖H.

Moreover, let us define the variational space V as follows,

V = {v ∈ H1(�); v = 0 on �D ∪ �S},
with scalar product (·, ·)V and norm ‖·‖V.

By using the classical Green’s formula and boundary conditions

(3) and (4), we write the variational formulation of Problem P in

terms of the velocities v = u̇ and e = ẇ. Here, v denotes the velocity of

the viscoelastic material and e is the velocity of the elastic material.

Problem VP. Find the velocity of the viscoelastic material v: [0, T]

→ V and the velocity of the elastic material e: [0, T] → V such that

v(0) = v0, e(0) = e0 and, for a.e. t ∈ (0, T),

ρ1(v̇(t), z)Y + ξ(u(t) − w(t), z)Y + ξ ∗(u̇(t) − ẇ(t), z)Y

+β(∇w(t),∇z)H + α(∇u(t),∇z)H + μ∗(∇u̇(t),∇z)H

= ρ1(F1(t), z)Y , ∀ z ∈ V, (7)

ρ2(ė(t), r)Y + ξ(w(t) − u(t), r)Y + ξ ∗(ẇ(t) − u̇(t), r)Y

+β(∇u(t),∇r)H + γ (∇w(t),∇r)H

= ρ2(F2(t), r)Y , ∀r ∈ V, (8)

where the displacement of the viscoelastic material u(t) is obtained

from the relation

u(t) =
∫ t

0

v(s) ds + u0, (9)

and the displacement of the elastic material w(t) is calculated from

w(t) =
∫ t

0

e(s) ds + w0. (10)

The existence and uniqueness of weak solutions as well as an ex-

ponential energy decay property have been considered in Quintanilla

(2005), where the thermal effects were also included. It is stated in

the following.

Theorem 2.1. Assume that

μ∗ > 0, ξ > 0, ξ ∗ > 0, α > 0, γ > 0, ρ2 > 0, ρ1 > 0,

(11)

γα − β2 > 0, (12)

and also

F1, F2 ∈ C1([0, T ];Y). (13)

Therefore, Problem VP has a unique solution with the regularity:

u ∈ C1([0, T ]; H1(�)) ∩ C2([0, T ];Y),

w ∈ C([0, T ]; H1(�)) ∩ C2([0, T ];Y).

Moreover, if we define the energy function

E(t) = 1

2

∫
�

(ρ1u̇2 + ρ2ẇ2 + ξ(u − w)2 + α∇u · ∇u

+ γ∇w · ∇w + 2β∇w · ∇u) dx,

and we assume that F1 = F2 = 0, then there exist two positive constants

M, λ > 0 such that

E(t) ≤ M E(0)e−λt for t ≥ 0.

3. Fully discrete approximations: a priori error estimates

In this section, we now consider a fully discrete approximation

of Problem VP. This is done in two steps. First, we assume that � is a

polyhedral domain and we consider a finite dimensional space Vh ⊂ V,

approximating the variational space V, given by

V h = {vh ∈ C(�) ; vh
|K

∈ P1(K) K ∈ T h, vh = 0 on �D ∪ �S},
(14)

where P1(K) represents the space of polynomials of global degree

less or equal to one in K and we denote by (T h)h>0 a regular fam-

ily of triangulations of � (in the sense of Ciarlet (1991)), compati-

ble with the partition of the boundary � = ∂� into �D and �S; i.e.

the finite element space Vh is composed of continuous and piecewise

affine functions. Let hK be the diameter of an element K ∈ T h and let

h = max
K∈T h

hK denote the spatial discretization parameter. Moreover, we

assume that the discrete initial conditions, denoted by uh
0
, vh

0
, wh

0
and

eh
0
, are given by

uh
0 = Phu0, vh

0 = Phv0, wh
0 = Phw0, eh

0 = Phe0, (15)

where Ph is the L2(�)-projection operator over Vh.

Secondly, we consider a partition of the time interval [0, T], de-

noted by 0 = t0 < t1 < · · · < tN = T . In this case, we use a uniform

partition of the time interval [0, T] with step size k = T/N and nodes

tn = n k for n = 0, 1, . . . , N. For a continuous function z(t), we use

the notation zn = z(tn) and, for the sequence {zn}N
n=0

, we denote by

δzn = (zn − zn−1)/k its corresponding divided differences.

Therefore, using the backward Euler scheme, the fully discrete ap-

proximations are considered as follows.

Problem VPhk Find the discrete velocity of the viscoelastic ma-

terial vhk = {vhk
n }N

n=0 ⊂ V h and the discrete velocity of the elastic

material ehk = {ehk
n }N

n=0
⊂ V h such that vhk

0
= vh

0
, ehk

0
= eh

0
and, for
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