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a b s t r a c t

The fragmentation of a stretching rod in ductile material is investigated with the approach of Mott
applied to a set of necking points. Namely, instead of randomly distributed point defects, the potential
sites of fracture are the maxima of the necking instability derived from a linear perturbation analysis.
The process is supposed to be dominated by the fastest growing eigenmode giving distances between
potential failure sites of the order of the critical wavelength. The scatter in failure times, which is at
the origin of the obscuration process controlling fragmentation, is successively linked to a probabilistic
threshold for failure and the combination of several modes giving maxima of varying amplitudes. The
first assumption leads to continuous fragment size distributions of the same shape as the ones obtained
for a random seeding of point defects, with potential sizes limited to multiples of the critical wavelength.
On the contrary, the multimodal character of the instable perturbation introduces correlations between
neighboring failure points which affect the distributions significantly.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The dynamic fragmentation of expanding structures (rings,
cylinders, spheres or hemispheres) in ductile materials usually
starts by the localization of plastic deformation in multiple necks
forming potential sites of fracture. Next, the plastic strain in some
of these necks rapidly increases with time up to a point when fail-
ure occurs whereas the development of other necks is arrested due
to unloading waves propagating in the structure as soon as failure
has started. The fragment size distribution is the result of this
sequence of events which is observed on high speed camera
images such as in the electromagnetic expanding ring experiments
of Zhang and Ravi-Chandar (2006).

Fragmentation is modeled classically with statistical
approaches postulating a random seeding of point defects (necking
sites in ductile fragmentation) and a failure frequency per unit vol-
ume of the structure evolving with the mean deformation. The for-
mation of fragments is then governed by a competition between
the activation of potential failure points and the impingement of
some of them. More precisely, the propagation of release waves
from the points which break first leads to the development of
obscured zones in which failure is inhibited. The starting point of
these analyses is the work of Mott (1947) who introduced the basic
elements of the statistical fragmentation theory. The fragment size

distribution function was later explicited by Grady (1981) on the
basis of a homogeneous nucleation process and an evolution of
the cumulative area of the obscured zones which integrates the
overlapping effects; the modeling of the latter is inspired by works
on the kinetics of phase transformations (Johnson and Mehl, 1939).
In the obscuration process, the shape of release waves strongly
depends on the physics of failure in the active point defects:
Mott (1947) postulated an instantaneous fracture mechanism with
a stress falling to zero as soon as the point breaks. In the rigid plas-
tic case considered by Mott, the celerity of release waves tends to
infinity as the mean strain rate tends to zero; a more precise
elasto-plastic treatment was later adopted by Lee (1967) and
proved that the celerity was bounded by the elastic wave speed.
Next, Kipp and Grady (1985) extended the obscuration analysis
of Mott to unloading waves initiated by a dissipative failure pro-
cess with stress decreasing continuously, which seems more rele-
vant for ductile fracture.

Statistical fragmentation models were compared to the distri-
bution of fragment sizes in one-dimensional experiments on duc-
tile materials. Wesenberg and Sagartz (1977) performed a high
number of explosively expanded aluminum ring tests and
approached the Mott distribution as the number of tests integrated
in the statistics increases. The same tendency was displayed by
Zhang and Ravi-Chandar (2006, 2008) in their experiments for dif-
ferent materials and expanding velocities. Grady and Benson
(1983) tried to fit the distribution of fragment masses from copper
and aluminum electromagnetic ring expansions with the function
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obtained by Grady (1981); they managed to catch approximately
the shape of their experimental plot but did not predict the forma-
tion of the largest fragments.

At the beginning of the process, localization in necks is caused
by the instability of the homogeneous deformation of the struc-
ture. It is usually analyzed by linear stability analyses exhibiting
the periodic instability modes. In quasi-static loading, these modes
are bifurcations from the homogeneous solutions as shown by Hill
and Hutchinson (1975). In dynamic loading, they are eigenmodes
growing exponentially with time. These modes were identified
for different geometries: thick plates in plane strain loading
(Shenoy and Freund, 1999), stretching cylindrical rods
(Fressengeas and Molinari, 1994; Guduru and Freund, 2002;
Mercier and Molinari, 2003), expanding cylinders (Mercier and
Molinari, 2004), thick plates in biaxial stretching (Jouve, 2010).
These works displayed the influence of different effects such as
inertia, strain hardening, thermal softening and viscoplasticity
(the coupling of all effects is explicited in Jouve (2010) and
Mercier et al. (2010)). In many cases, the instable modes belong
to a restricted domain in wavelengths and a dominant wavelength,
corresponding to the fastest growing mode, is identified. The local-
ization pattern is supposed to result from the development of a
combination of instable modes which are excited by some pertur-
bation of the initial loading conditions. The simplest analysis only
considers the fastest growing mode, the associated wavelength
being the characteristic length of the localization process. A multi-
modal linear perturbation analysis was developed recently in El
Maï et al. (2014): the statistics of spacing between maxima (neck-
ing points) was investigated at different times and proved to be fit-
ted quite accurately by the spectrum in wavelengths of the
perturbation.

Although many authors associate the onset of necking to the
emergence of plastic instability (identified by the Considère
(1885) criterion in uniaxial stretching for instance), the accuracy
of the modal analysis to predict the position of the potential failure
sites involved in the fragmentation process is still a matter of
debate. Moreover, conclusions drawn from published experimental
data are not all in the same way. Guduru and Freund (2002) pro-
posed a criterion on the ratio G between the growth rate of the
modes and the mean strain rate and suggested that the localization
process should be governed by the first instable mode reaching a
critical value Gc for this ratio. They retrieved the average neck spac-
ing in the ring experiments of Grady and Benson (1983). With a
similar approach, Jouve (2010) analyzed the expanding cylinder
experiment of Olive et al. (1979): he found satisfactory agreement
on both the localization time and the average neck spacing with a
critical value Gc = 10. In an expanding hemisphere experiment with
transient plain strain loading conditions near the bottom, Mercier
et al. (2010) predicted the number of necks and the time and angu-
lar position for the emergence of the necking pattern. On the con-
trary, Zhang and Ravi-Chandar (2006) ring experiments on
aluminum displayed a distribution of distances between necks
with a large scatter and a maximum significantly lower than the
dominant wavelength predicted by an instability analysis and the
criterion of Guduru and Freund (2002). It is difficult to draw a def-
inite conclusion from these apparently contradictory data since
they may depend on many parameters such as the material tested,
the geometry of the samples (ring, cylinder, sphere, . . .) and the
characteristics of loading.

There are at least two limits to the modal analysis. First, the
instable perturbations are triggered by initial defects such as mate-
rial non-homogeneities or sample imperfections and the linear
analysis only holds when they can be considered as small ampli-
tude defects. This may no longer be the case when the sample
dimensions are small for instance. Another limit is that the modal
analysis implicitly assumes that local defects have enough time to

propagate and activate perturbation of the whole structure, which
is no longer the case for very high loading rates. This issue was
addressed in the work of Putelat and Triantafyllidis (2014) for an
elastic ring in compression: they showed that this condition was
governed by the ratio of the loading rate to the different wave
celerities. At last, let us mention that when the material behavior
is softening, the linear perturbation analysis exhibits instable
modes with infinitely short wavelengths and therefore does not
lead to a discrete set of potential failure points (the issue is inves-
tigated for plane strain loading conditions in Jouve (2013)).

However, in cases when the modal analysis is relevant, it is of
real interest to give some analytical tools to connect it with the
fragmentation approach. This is the aim of the present work which
assumes that each maximum of a linear perturbation applied to
the background homogeneous solution becomes a potential failure
point when the perturbation in strain reaches a critical value. The
positions and failure times of the potential failure points,
pre-determined by the linear analysis, are supposed to be fixed till
the end of the fragmentation process. In other words, the incidence
of release waves on the background solution and, subsequently on
the spectrum of instable modes, is neglected which implicitly
assumes that the fragmentation phase is brief compared to the per-
turbation development.

Both the scatter in failure times, controlling obscuration, and
the variations in neck spacing, confirmed by experimental observa-
tions, are essential features of the fragmentation process. They are
obtained by considering random fluctuations of the failure strain
over the structure and multimode perturbations.

In the following, the case of a cylindrical bar in tension is
retained and linear stability analysis is performed in a
one-dimensional framework. The eigenmodes are identified (Sec-
tion 2.1). The positions and failure times of point defects associated
with the maxima of an instable perturbation are investigated in
two cases: a single mode perturbation and a random failure strain
(Section 2.2) and a multimode perturbation and a constant failure
strain (Section 2.3). In the second case, the failure times are expli-
cited in the particular situation when the fastest growing mode is
modulated by a single secondary mode with much lower growth
rate. The statistics of fragment sizes are then driven from obscura-
tion conditions deduced from the propagation of release waves
emerging from these failure points. The conditions are written in
Section 3.1 for an instantaneous fracture hypothesis and elastic
release waves. The fragment size distributions are exhibited for a
random failure strain in Section 3.2 and a bimodal perturbation
in Section 3.3. The case of unloading waves associated with the
Kipp and Grady (1985) linear stress release hypothesis, for which
the obscuration conditions do not write as simply, is briefly dis-
cussed in Appendix A.

2. Failure points in a cylindrical bar developing necking
instabilities

2.1. Linear stability analysis

A cylindrical bar of initial cross section A0 ¼ pr2
0 is loaded at a

constant tensile velocity at the extremities (the initial strain rate
is denoted _e0). The instability analysis is performed in a
one-dimensional formalism in which the triaxiality of stress in
necked regions is taken into account as in Zhou et al. (2006) or
Vadillo et al. (2012) for instance. The material is incompressible
and strain hardening. Elasticity is supposed to be negligible in
the perturbation growth phase. Thermal effects are disregarded.

Namely, all the mechanical variables are functions of the
Lagrangian coordinate X along the bar and of time t. The true strain
is given by:
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