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a b s t r a c t

A recent work has shown that using conformal mapping can lead to exact values of the degenerate scales in

plane elasticity. We elaborate on this work by introducing some algebraic tools when this conformal mapping

is a rational fraction transforming the outside of the unit circle into the outside of the considered domain.

Using these tools, new cases are solved including shortened hypotrochoid, arc of circle, new approximates of

equilateral triangle and square or symmetric Joukowski profiles. Another method makes it possible to obtain

the degenerate scales for plane elasticity from the degenerate scale for Laplace’s equation for some multiply

connected sets: the cases of segments on a line or of arcs of circle with a n-fold symmetry. In these last cases,

the exact values of the degenerate scales are obtained when the degenerate scale for the Laplace problem is

known.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The degenerate scales appear when solving single layer bound-

ary integral equations with kernels containing a logarithmic term.

This is the case for plane problems related to conduction or elasticity.

Among early investigators working on Laplace’s equation, we can cite

Christiansen (1975); Jaswon (1963). Costabel and Dauge (1996) inves-

tigated the case of biharmonic equation. Antiplane elasticity prob-

lems are closely related to Laplace’s ones and some specific cases

have been considered: Joukowski profile Chen (2013), quadrilaterals

Chen (2012), regular N-gon domains Kuo et al. (2013b). The case of

plane elasticity has been studied in Constanda (1994); Kuhn et al.

(1987); Vodička and Mantič (2004). The interest in degenerate scales

has increased with the development of Boundary Element Methods,

the degenerate scales causing loss of uniqueness and ill conditioning

(Chen et al., 2002; Chen and Lin, 2008; Dijkstra and Mattheij, 2007)

of the linear system obtained by BEM. Several methods have been de-

veloped to get over this problem (Chen et al., 2014, 2015b, 2005; Chen

and Lin, 2008; Christiansen, 1982).

The asymptotic behavior of degenerate scales has been investi-

gated for Laplace’s equation Corfdir and Bonnet (2013) and for plane

elasticity (Chen, 2015; Vodička, 2013). Upper bounds of degenerate
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scales for plane elasticity have been obtained recently Corfdir and

Bonnet (2015). A first work about anisotropic elasticity has been per-

formed by Vodička and Petrík (2015).

The exact values of degenerate scales for Laplace’s Boundary Value

Problems are known for many cases. They can be obtained by com-

puting the logarithmic capacity of the domain Hayes and Kellner

(1972). The name of logarithmic capacity has been given because

of “the analogy with the three-dimensional Newtonian case typified

by the distribution of electricity on a conductor” Hille (1962). A re-

view of known exact values of logarithmic capacities can be found

in Rumely (1989) and examples of application to Laplace’s problem

in Kuo et al. (2013a). In comparison, the known exact values of de-

generate scales for elasticity are scarce. A review of the cases already

studied can be found in Corfdir and Bonnet (2015). So, the aim of the

present paper is to provide two methods of solution and the exact

values of elastic degenerate scales in several application cases. The

methods of solution use complex potentials. Indeed, we apply the

ideas presented by Muskhelishvili (1953) to solve boundary values

problems in plane elasticity using a specific complex representation

(see also (England, 2003; Milne-Thomson, 1960; Sokolnikoff, 1956)).

This method has been applied to numerous problems, for example

the study of stress concentration due to holes and cracks (Savin, 1961;

Sneddon and Lowengrub, 1969). A first application of such a method

to the degenerate scale problem for elasticity was described in Chen

et al. (2009a). These authors use conformal mappings w(z) from the

outside of the unit disk to the outside of considered domains. One

feature of these conformal mappings w(z) is to behave as z at ∞.
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Fig. 1. Notations: conformal mapping w from C− to �− .

In this paper, a first new method is developed by extending

the methodology described in the pioneering paper of Chen et al.

(2009a), leading to a more systematic means to obtain the degen-

erate scales. The computation leads to finite algebraic linear systems.

Then, the calculus can be greatly alleviated by the use of symbolic

computational softwares.

A second method is developed, using the solution of the Laplace’s

problem to build the elastic complex potentials for two cases: sets of

segments on a line or set of arcs of a circle with a n-fold symmetry

axis. We show how to find the exact values of the elasticity degener-

ate scales in these cases when the exact value of the degenerate scale

(or of the logarithmic capacity) for Laplace’s problem is known.

2. The null condition at the boundary using conformal mapping

and complex potentials

In this paper, the degenerate scale problem for elasticity will be

studied for contours that can be described by using conformal map-

pings (For example, contour � in Fig. 1). This section presents the

background on conformal mapping and complex potentials that are

used to find the degenerate scales. In a first step, the requirements

on the conformal mappings that are used to describe different con-

tours are prescribed. Next, the complex potentials that allow us to

obtain the solution of plane elasticity problem are recalled, these

potentials being also submitted to precise requirements. Degener-

ate scales correspond to specific contours such that non-null poten-

tials meet a condition of null prescribed displacement at such con-

tours. So, the following step will be to present how this condition

of null displacement at the boundary can be prescribed. These non-

null potentials will be called in the following “eigenfunctions with 0

eigenvalue”.

2.1. Choice of the type of conformal mapping

In the books of Muskhelishvili (1953) and Sokolnikoff (1956) the

conformal mappings considered for the study of infinite domains are

from the interior of the circle to the exterior of the image of the circle;

more recent authors (England, 2003; Milne-Thomson, 1960) find gen-

erally more convenient to use the transformation from the outside of

the circle to the outside of the image of the circle (Fig. 1). This choice is

coherent with the mathematical definition of the class � of univalent

functions Duren (1983, e.g.); it is also used for the evaluation of the

logarithmic capacity and of the degenerate scale for Laplace’s equa-

tion. As explained thereafter, the contours � that will be obtained

by the conformal mappings w(z) in � are at the degenerate scale for

Laplace’s equation.

We consider mapping functions defined on C− and which can be

written in the following way:

ζ = Rw(z), (1)

where R is a positive real and limit
z→∞

w(z)
z = 1. Following Duren

(1983), the function w(z) is a univalent function of class �, i.e. holo-

morphic on C− except for a simple pole at infinity with residue 1, and

has a series expansion w(z) = z + ∑∞
n=0 mnz−n.

In a first step we assume that 0 /∈ �−; that is w ∈ �∗ Duren (1983).

If it is not the case, it is shown in Section 2.4 that a convenient transla-

tion allows us to transform the problem into another one that meets

that condition.

It is known that the image of the unit circle by such a mapping has

a logarithmic capacity equal to ln R and is at the degenerate scale for

the Laplace’s operator if R = 1 (Hayes and Kellner, 1972; Kuo et al.,

2013a; Yan and Sloan, 1988). So, we will essentially compare the

degenerate scales for elasticity to the degenerate scale for Laplace’s

problem.

2.2. Use of the elastic complex potentials

Following Muskhelishvili (1953), two elastic complex potentials

� and � can be used to obtain a displacement field solution of the

plane elasticity equations in ζ plane. They are written:

�(ζ) = A ln (ζ ) + Cζ + �0(ζ ), (2)

�(ζ) = −A ln (ζ ) + C′ζ + �0(ζ ) (3)

where A is the conjugate of A and functions �0 and �0 are holomor-

phic in �−. Then, the displacement components u and v are given by:

2G(u + iv) = κ� − ζ�′ − � (4)

with κ = 3 − 4ν for plane strain problem (κ = (3 − ν)/(1 + ν) for

plane stress problems).

Following Vodička and Mantič (2004), it is also required for the

eigenfunctions with zero eigenvalue to meet the condition that the

stress field induces a finite resultant force at the boundary and tends

to 0 at infinity. A first consequence is that the solutions to the zero

eigenvalue problem are such that C = C′ = 0.

A second consequence of that condition impacts also the value of

�0 and �0 at infinity. We refer to Chen et al. (2009b) and we adopt

the following values for the potentials of a concentrated force P at a

point t with components Px and Py England (2003):

�P = −F ln (z − t);

�P = κF ln (z − t) + F
t

z − t
with F = − Px + iPy

2π(κ + 1)
. (5)

Then, as shown in Chen et al. (2009b), the potentials at infinity can

be written in the form (2,3) with C = C′ = 0 and �0 and �0 tend to

zero when z tends to infinity. This form of �0 and �0 depends on

the choice of the complex potentials �P and �P related to the con-

centrated force and is true only for the choice given by (5). It is im-

portant to notice that this form of potential for a point force corre-

sponds to an expression of the Green’s tensor for plane elasticity that

is not the standard Green’s tensor (Kelvin’s tensor). In addition, mod-

ifying the choice of the potential that is used to describe the concen-

trated forces leads to another value of the degenerate scale. A scaling

procedure to convert the degenerate scale for one choice of poten-

tial to the degenerate scale for another one is reported in Vodička

and Mantič (2004, (3.4)). A consequence is that all degenerate scales

obtained in the following must be multiplied by the factor e
1

2κ to

recover the degenerate scales corresponding to the usual Kelvin’s

tensor.

2.3. The boundary equation for eigenfunctions with 0 eigenvalue

We are looking for non trivial solutions with a null displace-

ment on �: then the potentials �(ζ ), �(ζ ) must satisfy a boundary
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