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a b s t r a c t

We consider the inverse problem of identifying a single open crack in a longitudinally vibrating rod hav-
ing non-uniform smooth profile. Without any a priori assumption on the smallness of the damage and
assuming that the rod profile is symmetric with respect to the mid-point of the rod axis, we present a
constructive diagnostic algorithm from minimal frequency data. We show that the crack can be uniquely
identified, up to a symmetric position, from the first two positive natural frequencies of the rod under
free–free end conditions. We also show that the non-uniqueness of the damage location can be removed
by using as data the first positive resonant frequency of the free–free rod and the first antiresonant fre-
quency of the driving-point frequency response evaluated at one end of the rod. The results of numerical
simulations and of applications of the method to experimental data agree well with the theory.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Non-uniform vibrating beams are frequently used in engineer-
ing applications since they may offer the advantage for a selective
distribution of stiffness and mass. This may help in fitting special
design requirements and in obtaining optimal dynamical
responses.

In spite to the importance of the vibrational behavior of such
beams, many studies focussed on uniform beams. The lack of
research is all the greater in the case of non-uniform beams with
a localized damage, such as a crack, and, particularly, on the
inverse problem of identifying the damage from dynamic data.
Actually, several researchers considered the identification of a sin-
gle (open) crack from frequency measurements, but their studies
were often restricted to rods with uniform profile, see, among
others, the contributions (Springer et al., 1988; Lin and Chang,
2004; Rubio, 2009; Cerri and Vestroni, 2000; Vestroni and
Capecchi, 2000). A limited number of researches focussed on crack
identification on non-uniform beams. We refer, for example, to the
paper Chaudhari and Maiti (2000) for a study of direct and inverse
problems for geometrically segmented cracked beams, and to the
contributions Adams et al. (1978) and Liang et al. (1992) for reso-

nant frequency-based damage assessment in tapered and piece-
wise constant cracked beams, respectively.

In this paper we shall concern with the crack identification
problem for beams under longitudinal vibrations (rods) by mini-
mal spectral data. One of the first rigorous results on this topic is
due to Narkis (1994), who proved that a single small crack in a
free–free uniform rod can be uniquely localized (up to a symmetric
position) by the first two positive natural frequencies of the longi-
tudinal vibration. Under the assumption that the crack remains
open during vibration, the damage was modeled as a translational
linearly elastic spring, of stiffness K, located at the cross-section of
abscissa s. The stiffness value K can be estimated in terms of the
geometry of the cross-section and the mechanical properties of
the beam, see Freund and Herrmann (1976). An extended series
of experiments confirm the accuracy of the localized flexibility
model for cracked rods, particularly for low frequencies, see,
among other contributions, Caddemi and Morassi (2013). Narkis’s
method is based on a perturbation analysis and takes advantage
of the fact that the frequency equation for a uniform cracked rod
can be written in explicit form.

The identification of a single small crack in a rod with variable
profile has been considered in Morassi (2001). Working directly on
the weak formulation of the eigenvalue problem, it was shown in
Morassi (1993) that the first order change dkn in a generic eigen-
value kn (e.g., the resonant frequency squared) is given by

dkn ¼ N2
nðsÞ
K

; ð1Þ
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where NnðsÞ is the axial force in the nth vibration mode of the
undamaged rod, evaluated at the cracked cross-section of abscissa
s. It follows that the ratio of the first order changes to two
eigenvalues

dkn
dkm

¼ N2
nðsÞ

N2
mðsÞ

ð2Þ

is known as a function of s only, and it may be possible to find the
position of the crack s corresponding to a given (measured) value of
dkn
dkm

. In particular, for a free–free rod with regular profile a ¼ aðxÞ
(e.g., a continuous and continuously differentiable function) and
symmetric with respect to the mid-point, it was shown in Morassi
(2001) that the knowledge of the first (m ¼ 1) and second (n ¼ 2)
positive eigenfrequencies uniquely determines the position of the
crack, up to a symmetric position. Under the same assumptions,
the indeterminacy induced by the symmetry of the rod can be
removed by using the first resonant frequency of the free–free rod
and the first antiresonant frequency of the driving point frequency
response function measured at one end of the rod, see Dilena and
Morassi (2004).

All the results found in Narkis (1994), Morassi (2001) and
Dilena and Morassi (2004) hold under the essential hypothesis that
the severity of the crack is small, that is the cracked rod is a pertur-
bation of the undamaged rod. In addition, it should be noticed that
the identification algorithm proposed in Morassi (2001) and Dilena
and Morassi (2004) is constructive for rods with uniform profile
only. The assumption of light damage is reasonable in many prac-
tical applications. However, it is not easy to state rigorously when a
crack can be considered as small. In fact, even restricting the anal-
ysis to the linearized frequency change, Eq. (1) shows that the
vibration modes have wavy sensitivity to damage according to
the position of the crack, and that the wavy character is more oscil-
lating as the mode order increases. The introduction of an average
frequency shift does not simplify the analysis, since it should be
clarified how many data must be included in the calculation and
how the threshold value corresponding to small damage should
be selected. In addition, it is desirable to obtain a unifying general
theory of the diagnostic problem capable to include damages rang-
ing from small to large severity.

A first rigorous attempt to solve the inverse problem of detect-
ing a not necessarily small crack in a rod has been presented in
Rubio et al. (2015). The authors have shown that the results found
in Morassi (2001) and Dilena and Morassi (2004) for a small crack
continue to hold even for a crack with any level of severity, pro-
vided that the rod is uniform. The proof presented in Rubio et al.
(2015) is based on a careful analysis of the solutions of the nonlin-
ear system formed by the frequency equation (which is available in
closed form) written for the pair of spectral input data, together
with suitable lower and upper bounds derived within the varia-
tional theory of eigenvalues.

When a rod has variable profile, no closed form expression for
the frequency equation is available and a different approach must
be adopted for the identification of damage. This open inverse
problem has motivated our research and its solution is the objec-
tive of the present study. The main steps of our analysis are as
follows.

(i) We introduce an equivalent problem for a vibrating rod with
a point mass m at the position s.

(ii) We determine the qualitative behavior of the so called k�m
and k� s curves, that is the functions kn ¼ knðs; �Þ and
kn ¼ knð�;mÞ, for fixed s and fixed m, respectively.

(iii) We solve the inverse problem by combining the information
contained in the k�m; k� s curves corresponding to the
pair of frequency data used in identification.

Let us illustrate with some more details the content of such
steps.

Step (i) is based on a transformation of the eigenvalue problem
for the cracked rod in an equivalent eigenvalue problem for a rod
with a point mass m ¼ 1

K located at the cracked cross-section, with
suitable coefficients and under proper boundary conditions (see
Proposition 2.1 for a precise statement). Therefore, the problem
of identifying the crack is transformed in the equivalent problem
of determining the location and magnitude of the point mass from
a pair of natural frequencies.

Step (ii) is mainly based on the explicit determination of the
eigenvalue derivatives with respect to the parameters s and m.
The expression of the derivative @k

@m was used in Morassi and
Dilena (2002) in a study of the inverse problem of locating a small
point mass in a vibrating rod from natural frequency data. The
analysis of the k�m and k� s curves allows to determine the qual-
itative behavior of the first and second eigenvalue of the free–free
rod with respect to the position and intensity of the point mass
(see Theorem 5.5 for details). It is exactly at this point that, for
technical reasons, we restrict the attention to rods having symmet-
ric profile with respect to the mid-point of the axis.

The results obtained in Step (ii) and the use of suitable general
properties of the eigenpairs of the problem, allowed to develop in
Step (iii) a reconstruction algorithm for the identification of the
point mass (up to a symmetric location) from the first two positive
resonant frequencies of the rod. An extended series of numerical
simulations on rods having different profile and for various posi-
tions and intensities of the crack supported the theoretical results.
A selected set of numerical results and some applications to exper-
imental data are presented in Section 9.

The above results can be generalized in a couple of directions.
First, the crack identification problem can be formulated and
solved in terms of resonant and antiresonant data (see Section 7),
thus showing that both the severity and the location of the crack
can be uniquely determined by measuring the first positive natural
frequency under free–free end conditions and the first antireso-
nant frequency of the driving frequency response evaluated at
one end of the rod. Second, the analysis can be carried out also
for symmetric rods in which the linear mass density is not propor-
tional to the axial stiffness function (see Section 8).

The paper is organized as follows. The reduction of the eigen-
value problem for the cracked rod to an equivalent eigenvalue
problem for a rod with a point mass is shown in Section 2. Certain
basic properties of the eigenvalue problem for the rod with a point
mass are listed in Section 3. The first order partial derivatives of an
eigenvalue with respect to the point mass and the mass location
are determined in Section 4. The behavior of the k-m and k-s curves
is studied in Section 5. The damage identification algorithm in a
free–free rod based on measurements of the first two positive nat-
ural frequencies is presented in Section 6. Generalizations to
resonant-antiresonant frequency data and to larger classes of rods
are illustrated in Section 7 and Section 8, respectively. Section 9 is
devoted to numerical and experimental applications of the theory.
Proofs of some technical results are collected in Appendix (Sec-
tion A). We think that the disadvantage of increasing the size of
the paper by including the Appendix is by far out-weighed by
the fact that Section 3 and, partially, Section 5, together with the
Appendix, represent a self-contained approach to the topic.

2. An equivalent eigenvalue problem for a rod with a point mass
and main result

Let us consider a longitudinally vibrating free–free straight thin

rod of length L. Denote by bA ¼ bAðzÞ the area of the transversal
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